Poster
Diverse Video Generation using a Gaussian Process Trigger
Gaurav Shrivastava · Abhinav Shrivastava
Virtual
Keywords: [ video synthesis ] [ future frame generation ] [ video generation ] [ gaussian process priors ] [ diverse video generation ]
Generating future frames given a few context (or past) frames is a challenging task. It requires modeling the temporal coherence of videos as well as multi-modality in terms of diversity in the potential future states. Current variational approaches for video generation tend to marginalize over multi-modal future outcomes. Instead, we propose to explicitly model the multi-modality in the future outcomes and leverage it to sample diverse futures. Our approach, Diverse Video Generator, uses a GP to learn priors on future states given the past and maintains a probability distribution over possible futures given a particular sample. We leverage the changes in this distribution over time to control the sampling of diverse future states by estimating the end of on-going sequences. In particular, we use the variance of GP over the output function space to trigger a change in the action sequence. We achieve state-of-the-art results on diverse future frame generation in terms of reconstruction quality and diversity of the generated sequences.