EEC: Learning to Encode and Regenerate Images for Continual Learning

Ali Ayub · Alan Wagner

Keywords: [ Cognitively-inspired Learning ] [ catastrophic forgetting ] [ continual learning ]

[ Abstract ]
[ Paper ]
Thu 6 May 9 a.m. PDT — 11 a.m. PDT


The two main impediments to continual learning are catastrophic forgetting and memory limitations on the storage of data. To cope with these challenges, we propose a novel, cognitively-inspired approach which trains autoencoders with Neural Style Transfer to encode and store images. Reconstructed images from encoded episodes are replayed when training the classifier model on a new task to avoid catastrophic forgetting. The loss function for the reconstructed images is weighted to reduce its effect during classifier training to cope with image degradation. When the system runs out of memory the encoded episodes are converted into centroids and covariance matrices, which are used to generate pseudo-images during classifier training, keeping classifier performance stable with less memory. Our approach increases classification accuracy by 13-17% over state-of-the-art methods on benchmark datasets, while requiring 78% less storage space.

Chat is not available.