Poster

Impact of Representation Learning in Linear Bandits

Jiaqi Yang · Wei Hu · Jason Lee · Simon Du

Keywords: [ multi-task learning ] [ representation learning ] [ linear bandits ]

Abstract: We study how representation learning can improve the efficiency of bandit problems. We study the setting where we play $T$ linear bandits with dimension $d$ concurrently, and these $T$ bandit tasks share a common $k (\ll d)$ dimensional linear representation. For the finite-action setting, we present a new algorithm which achieves $\widetilde{O}(T\sqrt{kN} + \sqrt{dkNT})$ regret, where $N$ is the number of rounds we play for each bandit. When $T$ is sufficiently large, our algorithm significantly outperforms the naive algorithm (playing $T$ bandits independently) that achieves $\widetilde{O}(T\sqrt{d N})$ regret. We also provide an $\Omega(T\sqrt{kN} + \sqrt{dkNT})$ regret lower bound, showing that our algorithm is minimax-optimal up to poly-logarithmic factors. Furthermore, we extend our algorithm to the infinite-action setting and obtain a corresponding regret bound which demonstrates the benefit of representation learning in certain regimes. We also present experiments on synthetic and real-world data to illustrate our theoretical findings and demonstrate the effectiveness of our proposed algorithms.

Chat is not available.