Skip to yearly menu bar Skip to main content


Poster

Learning to Recombine and Resample Data For Compositional Generalization

Ekin Akyürek · Afra Feyza Akyürek · Jacob Andreas

Keywords: [ data augmentation ] [ generative modeling ] [ compositional generalization ] [ language processing ] [ sequence models ]


Abstract:

Flexible neural sequence models outperform grammar- and automaton-based counterparts on a variety of tasks. However, neural models perform poorly in settings requiring compositional generalization beyond the training data—particularly to rare or unseen subsequences. Past work has found symbolic scaffolding (e.g. grammars or automata) essential in these settings. We describe R&R, a learned data augmentation scheme that enables a large category of compositional generalizations without appeal to latent symbolic structure. R&R has two components: recombination of original training examples via a prototype-based generative model and resampling of generated examples to encourage extrapolation. Training an ordinary neural sequence model on a dataset augmented with recombined and resampled examples significantly improves generalization in two language processing problems—instruction following (SCAN) and morphological analysis (SIGMORPHON 2018)—where R&R enables learning of new constructions and tenses from as few as eight initial examples.

Chat is not available.