firstbacksecondback
24 Results
Poster
|
Thu 1:00 |
Hopfield Networks is All You Need Hubert Ramsauer · Bernhard Schäfl · Johannes Lehner · Philipp Seidl · Michael Widrich · Lukas Gruber · Markus Holzleitner · Thomas Adler · David Kreil · Michael K Kopp · Günter Klambauer · Johannes Brandstetter · Sepp Hochreiter |
|
Spotlight
|
Mon 12:15 |
On the Theory of Implicit Deep Learning: Global Convergence with Implicit Layers Kenji Kawaguchi |
|
Oral
|
Tue 19:55 |
Global Convergence of Three-layer Neural Networks in the Mean Field Regime Huy Tuan Pham · Phan-Minh Nguyen |
|
Spotlight
|
Thu 19:55 |
RMSprop converges with proper hyper-parameter Naichen Shi · Dawei Li · Mingyi Hong · Ruoyu Sun |
|
Poster
|
Thu 17:00 |
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors Yu Sun · Jiaming Liu · Yiran Sun · Brendt Wohlberg · Ulugbek Kamilov |
|
Workshop
|
Fri 8:40 |
Biased Client Selection for Improved Convergence of Federated Learning Gauri Joshi |
|
Poster
|
Thu 17:00 |
Global Convergence of Three-layer Neural Networks in the Mean Field Regime Huy Tuan Pham · Phan-Minh Nguyen |
|
Poster
|
Thu 17:00 |
Linear Convergent Decentralized Optimization with Compression Xiaorui Liu · Yao Li · Rongrong Wang · Jiliang Tang · Ming Yan |
|
Poster
|
Mon 9:00 |
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction Wei Deng · Qi Feng · Georgios Karagiannis · Guang Lin · Faming Liang |
|
Workshop
|
UNDERSTANDING CLIPPED FEDAVG: CONVERGENCE AND CLIENT-LEVEL DIFFERENTIAL PRIVACY Xinwei Zhang · Xiangyi Chen · Jinfeng Yi · Steven Wu · Mingyi Hong |
||
Spotlight
|
Tue 20:20 |
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors Yu Sun · Jiaming Liu · Yiran Sun · Brendt Wohlberg · Ulugbek Kamilov |
|
Workshop
|
Fri 9:06 |
Q&A for Biased Client Selection for Improved Convergence of Federated Learning |