Skip to yearly menu bar Skip to main content


Search All 2021 Events
 

11 Results

<<   <   Page 1 of 1   >>   >
Spotlight
Wed 5:15 Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods
Taiji Suzuki · Akiyama Shunta
Poster
Mon 1:00 Wasserstein-2 Generative Networks
Alexander Korotin · Vage Egiazarian · Arip Asadulaev · Alexander Safin · Evgeny Burnaev
Poster
Wed 9:00 Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization
Alexander Korotin · Lingxiao Li · Justin Solomon · Evgeny Burnaev
Poster
Mon 17:00 Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods
Taiji Suzuki · Akiyama Shunta
Poster
Mon 17:00 Learning A Minimax Optimizer: A Pilot Study
Jiayi Shen · Xiaohan Chen · Howard Heaton · Tianlong Chen · Jialin Liu · Wotao Yin · Zhangyang Wang
Poster
Wed 17:00 AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
Yuchen Jin · Tianyi Zhou · Liangyu Zhao · Yibo Zhu · Chuanxiong Guo · Marco Canini · Arvind Krishnamurthy
Poster
Thu 1:00 AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights
Byeongho Heo · Sanghyuk Chun · Seong Joon Oh · Dongyoon Han · Sangdoo Yun · Gyuwan Kim · Youngjung Uh · Jung-Woo Ha
Poster
Tue 9:00 On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel Smith · Benoit Dherin · David Barrett · Soham De
Oral
Thu 0:30 Optimal Rates for Averaged Stochastic Gradient Descent under Neural Tangent Kernel Regime
Atsushi Nitanda · Taiji Suzuki
Poster
Thu 1:00 Optimal Rates for Averaged Stochastic Gradient Descent under Neural Tangent Kernel Regime
Atsushi Nitanda · Taiji Suzuki
Poster
Mon 1:00 Overfitting for Fun and Profit: Instance-Adaptive Data Compression
Ties van Rozendaal · Iris Huijben · Taco Cohen