Skip to yearly menu bar Skip to main content


Probabilistic Self-supervised Representation Learning via Scoring Rules Minimization

Amirhossein Vahidi · Simon Schosser · Lisa Wimmer · Yawei Li · Bernd Bischl · Eyke Hüllermeier · Mina Rezaei

Halle B #146
[ ]
Tue 7 May 1:45 a.m. PDT — 3:45 a.m. PDT


%Self-supervised learning methods have shown promising results across a wide range of tasks in computer vision, natural language processing, and multimodal analysis. However, self-supervised approaches come with a notable limitation, dimensional collapse, where a model doesn't fully utilize its capacity to encode information optimally. Motivated by this, we propose ProSMin, a novel probabilistic self-supervised learning approach that leverages the power of probabilistic models to enhance representation quality and mitigate collapsing representations. Our proposed approach involves two neural networks, the online network and the target network, which collaborate and learn the diverse distribution of representations from each other through probabilistic knowledge distillation. The two networks are trained via our new loss function based on proper scoring rules. We provide a theoretical justification for ProSMin and demonstrate its modified scoring rule. This insight validates the method's optimization process and contributes to its robustness and effectiveness in improving representation quality. We evaluate our probabilistic model on various downstream tasks, such as in-distribution generalization, out-of-distribution detection, dataset corruption, low-shot learning, and transfer learning. Our method achieves superior accuracy and calibration, outperforming the self-supervised baseline in a variety of experiments on large datasets such as ImageNet-O and ImageNet-C. ProSMin thus demonstrates its scalability and real-world applicability. Our code is publicly available:

Chat is not available.