Skip to yearly menu bar Skip to main content


Poster
in
Workshop: 2nd Workshop on Mathematical and Empirical Understanding of Foundation Models

Can Generative Multimodal Models Count to Ten?

Sunayana Rane · Alexander Ku · Jason Baldridge · Ian Tenney · Thomas L. Griffiths · Been Kim


Abstract:

We adapt a developmental psychology paradigm to characterize the counting ability of the foundation model Parti. We show that three model scales of the Parti model (350m, 3B, and 20B parameters respectively) each have some counting ability, with a significant jump in performance between the 350m and 3B model scales. We also demonstrate that it is possible to interfere with these models' counting ability simply by incorporating unusual descriptive adjectives for the objects being counted into the text prompt. We analyze our results in the context of the knower-level theory of child number learning. Our results show that we can gain experimental intuition for how to probe model behavior by drawing from a rich literature of behavioral experiments on humans, and, perhaps most importantly, by adapting human developmental benchmarking paradigms to AI models, we can characterize and understand their behavior with respect to our own.

Chat is not available.