Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Tackling Climate Change with Machine Learning: Fostering the Maturity of ML Applications for Climate Change

On the potential of Optimal Transport in Geospatial Data Science

Nina Wiedemann · Martin Raubal


Abstract:

Prediction problems in geographic information science and transportation are often motivated by the possibility to enhance operational efficiency and thereby reduce emissions. Examples range from predicting car sharing demand for relocation planning to forecasting traffic congestion for navigation purposes. However, conventional accuracy metrics ignore the spatial distribution of the errors, despite its relevance for operations. Here, we put forward a spatially aware evaluation metric and loss function based on Optimal Transport (OT). Our framework leverages partial OT and can minimize relocation costs in any spatial prediction problem. We showcase the advantages of OT-based evaluation over conventional metrics and further demonstrate the application of an OT loss function for improving forecasts of bike sharing demand and charging station occupancy. Thus, our framework not only aligns with operational considerations, but also signifies a step forward in refining predictions within geospatial applications. All code is available at https://github.com/mie-lab/geospatialoptimaltransport.

Chat is not available.