Poster
in
Workshop: Navigating and Addressing Data Problems for Foundation Models (DPFM)
ON THE SCALABILITY OF GNNS FOR MOLECULAR GRAPHS
Maciej Sypetkowski · Frederik Wenkel · Farimah Poursafaei · Nia Dickson · Karush Suri · Philip Fradkin · Dominique Beaini
Keywords: [ Scaling Laws ] [ graph neural networks ] [ architecture design ] [ Molecular Biology ]
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have observed a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a 30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling behavior on 34 tasks, outclassing previous large models. We hope that our work will pave the way for an era where foundational GNNs drive pharmaceutical drug discovery.