Skip to yearly menu bar Skip to main content


Spotlight Poster

Inherently Interpretable Time Series Classification via Multiple Instance Learning

Joseph Early · Gavin Cheung · Kurt Cutajar · Hanting Xie · Jas Kandola · Niall Twomey

Halle B #277
[ ] [ Project Page ]
Fri 10 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Conventional Time Series Classification (TSC) methods are often black boxes that obscure inherent interpretation of their decision-making processes. In this work, we leverage Multiple Instance Learning (MIL) to overcome this issue, and propose a new framework called MILLET: Multiple Instance Learning for Locally Explainable Time series classification. We apply MILLET to existing deep learning TSC models and show how they become inherently interpretable without compromising (and in some cases, even improving) predictive performance. We evaluate MILLET on 85 UCR TSC datasets and also present a novel synthetic dataset that is specially designed to facilitate interpretability evaluation. On these datasets, we show MILLET produces sparse explanations quickly that are of higher quality than other well-known interpretability methods. To the best of our knowledge, our work with MILLET is the first to develop general MIL methods for TSC and apply them to an extensive variety of domains.

Chat is not available.