Skip to yearly menu bar Skip to main content


Navigating Dataset Documentations in AI: A Large-Scale Analysis of Dataset Cards on HuggingFace

Xinyu Yang · Victor Weixin Liang · James Y Zou

Halle B #232
[ ]
Tue 7 May 7:30 a.m. PDT — 9:30 a.m. PDT


Advances in machine learning are closely tied to the creation of datasets. While data documentation is widely recognized as essential to the reliability, reproducibility, and transparency of ML, we lack a systematic empirical understanding of current dataset documentation practices. To shed light on this question, here we take Hugging Face - one of the largest platforms for sharing and collaborating on ML models and datasets - as a prominent case study. By analyzing all 7,433 dataset documentation on Hugging Face, our investigation provides an overview of the Hugging Face dataset ecosystem and insights into dataset documentation practices, yielding 5 main findings: (1) The dataset card completion rate shows marked heterogeneity correlated with dataset popularity: While 86.0\% of the top 100 downloaded dataset cards fill out all sections suggested by Hugging Face community, only 7.9\% of dataset cards with no downloads complete all these sections. (2) A granular examination of each section within the dataset card reveals that the practitioners seem to prioritize Dataset Description and Dataset Structure sections, accounting for 36.2\% and 33.6\% of the total card length, respectively, for the most downloaded datasets. In contrast, the Considerations for Using the Data section receives the lowest proportion of content, accounting for just 2.1\% of the text. (3) By analyzing the subsections within each section and utilizing topic modeling to identify key topics, we uncover what is discussed in each section, and underscore significant themes encompassing both technical and social impacts, as well as limitations within the Considerations for Using the Data section. (4) Our findings also highlight the need for improved accessibility and reproducibility of datasets in the Usage sections. (5) In addition, our human annotation evaluation emphasizes the pivotal role of comprehensive dataset content in shaping individuals' perceptions of a dataset card's overall quality. Overall, our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis and underlines the need for more thorough dataset documentation in machine learning research.

Chat is not available.