Skip to yearly menu bar Skip to main content

Spotlight Poster

BarLeRIa: An Efficient Tuning Framework for Referring Image Segmentation

Yaoming Wang · Li Jin · XIAOPENG ZHANG · Bowen Shi · Chenglin Li · Wenrui Dai · Hongkai Xiong · Qi Tian

Halle B #118
[ ]
Tue 7 May 7:30 a.m. PDT — 9:30 a.m. PDT


Pre-training followed by full fine-tuning has gradually been substituted by Parameter-Efficient Tuning (PET) in the field of computer vision. PET has gained popularity, especially in the context of large-scale models, due to its ability to reduce transfer learning costs and conserve hardware resources. However, existing PET approaches primarily focus on recognition tasks and typically support uni-modal optimization, while neglecting dense prediction tasks and vision language interactions. To address this limitation, we propose a novel PET framework called Bi-directional Intertwined Vision Language Efficient Tuning for Referring Image Segmentation (BarLeRIa), which leverages bi-directional intertwined vision language adapters to fully exploit the frozen pre-trained models' potential in cross-modal dense prediction tasks. In BarLeRIa, two different tuning modules are employed for efficient attention, one for global, and the other for local, along with an intertwined vision language tuning module for efficient modal fusion.Extensive experiments conducted on RIS benchmarks demonstrate the superiority of BarLeRIa over prior PET methods with a significant margin, i.e., achieving an average improvement of 5.6\%. Remarkably, without requiring additional training datasets, BarLeRIa even surpasses SOTA full fine-tuning approaches. The code is available at

Chat is not available.