Poster
Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian distributions
Frank Cole · Yulong Lu
Halle B #230
While score-based generative models (SGMs) have achieved remarkable successes in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a measure of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep network approximation rate for the true score function associated to the forward process, which is interesting in its own right.