Poster
Mathematical Justification of Hard Negative Mining via Isometric Approximation Theorem
Albert Xu · Jhih-Yi Hsieh · Bhaskar Vundurthy · Nithya Kemp · Eliana Cohen · Lu Li · Howie Choset
Halle B #166
In deep metric learning, the triplet loss has emerged as a popular method to learn many computer vision and natural language processing tasks such as facial recognition, object detection, and visual-semantic embeddings. One issue that plagues the triplet loss is network collapse, an undesirable phenomenon where the network projects the embeddings of all data onto a single point. Researchers predominately solve this problem by using triplet mining strategies. While hard negative mining is the most effective of these strategies, existing formulations lack strong theoretical justification for their empirical success. In this paper, we utilize the mathematical theory of isometric approximation to show an equivalence between the triplet loss sampled by hard negative mining and an optimization problem that minimizes a Hausdorff-like distance between the neural network and its ideal counterpart function. This provides the theoretical justifications for hard negative mining's empirical efficacy. Experiments performed on the Market-1501 and Stanford Online Products datasets with various network architectures corroborate our theoretical findings, indicating that network collapse tends to happen when batch size is too large or embedding dimension is too small. In addition, our novel application of the isometric approximation theorem provides the groundwork for future forms of hard negative mining that avoid network collapse.