Skip to yearly menu bar Skip to main content


Poster

Extending Power of Nature from Binary to Real-Valued Graph Learning in Real World

Chunshu Wu · Ruibing Song · Chuan Liu · Yunan Yang · Ang Li · Michael Huang · Tong Geng

Halle B #156

Abstract: Nature performs complex computations constantly at clearly lower cost and higher performance than digital computers. It is crucial to understand how to harness the unique computational power of nature in Machine Learning (ML). In the past decade, besides the development of Neural Networks (NNs), the community has also relentlessly explored nature-powered ML paradigms. Although most of them are still predominantly theoretical, a new practical paradigm enabled by the recent advent of CMOS-compatible room-temperature nature-based computers has emerged. By harnessing a dynamical system's intrinsic behavior of chasing the lowest energy state, this paradigm can solve some simple binary problems delivering considerable speedup and energy savings compared with NNs, while maintaining comparable accuracy. Regrettably, its values to the real world are highly constrained by its binary nature. A clear pathway to its extension to real-valued problems remains elusive. This paper aims to unleash this pathway by proposing a novel end-to-end Nature-Powered Graph Learning (NP-GL) framework. Specifically, through a three-dimensional co-design, NP-GL can leverage the spontaneous energy decrease in nature to efficiently solve real-valued graph learning problems. Experimental results across 4 real-world applications with 6 datasets demonstrate that NP-GL delivers, on average, $6.97\times 10^3$ speedup and $10^5$ energy consumption reduction with comparable or even higher accuracy than Graph Neural Networks (GNNs).

Chat is not available.