Skip to yearly menu bar Skip to main content


Poster

Out-of-Distribution Detection with Negative Prompts

Jun Nie · Yonggang Zhang · Zhen Fang · Tongliang Liu · Bo Han · Xinmei Tian

Halle B #226

Abstract:

Out-of-distribution (OOD) detection is indispensable for open-world machine learning models. Inspired by recent success in large pre-trained language-vision models, e.g., CLIP, advanced works have achieved impressive OOD detection results by matching the similarity between image features and features of learned prompts, i.e., positive prompts. However, existing works typically struggle with OOD samples having similar features with those of known classes. One straightforward approach is to introduce negative prompts to achieve a dissimilarity matching, which further assesses the anomaly level of image features by introducing the absence of specific features. Unfortunately, our experimental observations show that either employing a prompt like "not a photo of a" or learning a prompt to represent "not containing" fails to capture the dissimilarity for identifying OOD samples. The failure may be contributed to the diversity of negative features, i.e., tons of features could indicate features not belonging to a known class. To this end, we propose to learn a set of negative prompts for each class. The learned positive prompt (for all classes) and negative prompts (for each class) are leveraged to measure the similarity and dissimilarity in the feature space simultaneously, enabling more accurate detection of OOD samples. Extensive experiments are conducted on diverse OOD detection benchmarks, showing the effectiveness of our proposed method.

Chat is not available.