Skip to yearly menu bar Skip to main content


Communication-Efficient Federated Non-Linear Bandit Optimization

Chuanhao Li · Chong Liu · Yu-Xiang Wang

Halle B #201
[ ]
Thu 9 May 1:45 a.m. PDT — 3:45 a.m. PDT


Federated optimization studies the problem of collaborative function optimization among multiple clients (e.g. mobile devices or organizations) under the coordination of a central server. Since the data is collected separately by each client and always remains decentralized, federated optimization preserves data privacy and allows for large-scale computing, which makes it a promising decentralized machine learning paradigm. Though it is often deployed for tasks that are online in nature, e.g., next-word prediction on keyboard apps, most works formulate it as an offline problem. The few exceptions that consider federated bandit optimization are limited to very simplistic function classes, e.g., linear, generalized linear, or non-parametric function class with bounded RKHS norm, which severely hinders its practical usage. In this paper, we propose a new algorithm, named Fed-GO-UCB, for federated bandit optimization with generic non-linear objective function. Under some mild conditions, we rigorously prove that Fed-GO-UCB is able to achieve sub-linear rate for both cumulative regret and communication cost. At the heart of our theoretical analysis are distributed regression oracle and individual confidence set construction, which can be of independent interests. Empirical evaluations also demonstrate the effectiveness of the proposed algorithm.

Chat is not available.