Poster
Space Group Constrained Crystal Generation
Rui Jiao · Wenbing Huang · Yu Liu · Deli Zhao · Yang Liu
Halle B #6
Crystals are the foundation of numerous scientific and industrial applications. While various learning-based approaches have been proposed for crystal generation, existing methods neglect the spacegroup constraint which is crucial in describing the geometry of crystals and closely relevant to many desirable properties. However, considering spacegroup constraint is challenging owing to its diverse and nontrivial forms. In this paper, we reduce the spacegroup constraint into an equivalent formulation that is more tractable to be handcrafted into the generation process. In particular, we translate the spacegroup constraint into two cases: the basis constraint of the invariant exponential space of the lattice matrix and the Wyckoff position constraint of the fractional coordinates. Upon the derived constraints, we then propose DiffCSP++, a novel diffusion model that has enhanced a previous work DiffCSP by further taking spacegroup constraint into account. Experiments on several popular datasets verify the benefit of the involvement of the spacegroup constraint, and show that our DiffCSP++ achieves the best or comparable performance on crystal structure prediction and ab initio crystal generation.