Poster
Contrastive Preference Learning: Learning from Human Feedback without Reinforcement Learning
Joey Hejna · Rafael Rafailov · Harshit Sikchi · Chelsea Finn · Scott Niekum · W. Bradley Knox · Dorsa Sadigh
Halle B #170
Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular paradigm for aligning models with human intent. Typically RLHF algorithms operate in two phases: first, use human preferences to learn a reward function and second, align the model by optimizing the learned reward via reinforcement learning (RL). This paradigm assumes that human preferences are distributed according to reward, but recent work suggests that they instead follow the \emph{regret} under the user's optimal policy. Thus, learning a reward function from feedback is not only based on a flawed assumption of human preference, but also leads to unwieldy optimization challenges that stem from policy gradients or bootstrapping in the RL phase. Because of these optimization challenges, contemporary RLHF methods restrict themselves to contextual bandit settings (e.g., as in large language models) or limit observation dimensionality (e.g., state-based robotics). We overcome these limitations by introducing a new family of algorithms for optimizing behavior from human feedback using the \textit{regret}-based model of human preferences. Using the principle of maximum entropy, we derive \fullname (\abv), an algorithm for learning optimal policies from preferences without learning reward functions, circumventing the need for RL. \abv is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs. This enables \abv to elegantly scale to high-dimensional and sequential RLHF problems while being simpler than prior methods.