Skip to yearly menu bar Skip to main content


Poster

LLaMA-Adapter: Efficient Fine-tuning of Large Language Models with Zero-initialized Attention

Renrui Zhang · Jiaming Han · Chris Liu · Aojun Zhou · Pan Lu · Yu Qiao · Hongsheng Li · Gao Peng

Halle B #261

Abstract:

With the rising tide of large language models (LLMs), there has been a growing interest in developing general-purpose instruction-following models, e.g., ChatGPT. To this end, we present LLaMA-Adapter, a lightweight adaption method for efficient instruction tuning of LLaMA. Using 52K self-instruct demonstrations, LLaMA-Adapter only introduces 1.2M learnable parameters upon the frozen LLaMA 7B model, and costs less than one hour for fine-tuning. Specifically, a zero-initialized attention mechanism is proposed. It adopts a learnable zero gating to adaptively inject the instructional cues into LLaMA within self-attention layers, contributing to a stable training process and superior final performance. In this way, LLaMA-Adapter can generate high-quality responses to diverse language instructions, comparable to Alpaca with fully fine-tuned 7B parameters. Besides language commands, by incorporating an image encoder, our approach can be simply extended to a multi-modal LLM for image-conditioned instruction following, which achieves superior multi-modal reasoning capacity on several popular benchmarks (MME, MMBench, LVLM-eHub). Furthermore, we also verify the proposed zero-initialized attention mechanism for fine-tuning other pre-trained models (ViT, RoBERTa, CLIP) on traditional vision and language tasks, demonstrating the effectiveness and generalizability of our approach. Code and models are released at https://github.com/OpenGVLab/LLaMA-Adapter.

Chat is not available.