Skip to yearly menu bar Skip to main content


Poster

Exploring Effective Stimulus Encoding via Vision System Modeling for Visual Prostheses

Chuanqing Wang · Di Wu · Chaoming Fang · Jie Yang · Mohamad Sawan

Halle B #57
[ ]
Tue 7 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Visual prostheses are potential devices to restore vision for blind people, which highly depends on the quality of stimulation patterns of the implanted electrode array. However, existing processing frameworks prioritize the generation of stimulation while disregarding the potential impact of restoration effects and fail to assess the quality of the generated stimulation properly. In this paper, we propose for the first time an end-to-end visual prosthesis framework (StimuSEE) that generates stimulation patterns with proper quality verification using V1 neuron spike patterns as supervision. StimuSEE consists of a retinal network to predict the stimulation pattern, a phosphene model, and a primary vision system network (PVS-net) to simulate the signal processing from the retina to the visual cortex and predict the firing rate of V1 neurons. Experimental results show that the predicted stimulation shares similar patterns to the original scenes, whose different stimulus amplitudes contribute to a similar firing rate with normal cells. Numerically, the predicted firing rate and the recorded response of normal neurons achieve a Pearson correlation coefficient of 0.78.

Chat is not available.