Skip to yearly menu bar Skip to main content


Poster

Unveiling Options with Neural Network Decomposition

Mahdi Alikhasi · Levi Lelis

Halle B #250

Abstract:

In reinforcement learning, agents often learn policies for specific tasks without the ability to generalize this knowledge to related tasks. This paper introduces an algorithm that attempts to address this limitation by decomposing neural networks encoding policies for Markov Decision Processes into reusable sub-policies, which are used to synthesize temporally extended actions, or options. We consider neural networks with piecewise linear activation functions, so that they can be mapped to an equivalent tree that is similar to oblique decision trees. Since each node in such a tree serves as a function of the input of the tree, each sub-tree is a sub-policy of the main policy. We turn each of these sub-policies into options by wrapping it with while-loops of varied number of iterations. Given the large number of options, we propose a selection mechanism based on minimizing the Levin loss for a uniform policy on these options. Empirical results in two grid-world domains where exploration can be difficult confirm that our method can identify useful options, thereby accelerating the learning process on similar but different tasks.

Chat is not available.