Skip to yearly menu bar Skip to main content

Spotlight Poster

On the Foundations of Shortcut Learning

Katherine Hermann · Hossein Mobahi · Thomas FEL · Michael Mozer

Halle B #261
[ ]
Wed 8 May 7:30 a.m. PDT — 9:30 a.m. PDT


Deep-learning models can extract a rich assortment of features from data. Which features a model uses depends not only on predictivity---how reliably a feature indicates training-set labels---but also on availability---how easily the feature can be extracted from inputs. The literature on shortcut learning has noted examples in which models privilege one feature over another, for example texture over shape and image backgrounds over foreground objects. Here, we test hypotheses about which input properties are more available to a model, and systematically study how predictivity and availability interact to shape models' feature use. We construct a minimal, explicit generative framework for synthesizing classification datasets with two latent features that vary in predictivity and in factors we hypothesize to relate to availability, and we quantify a model's shortcut bias---its over-reliance on the shortcut (more available, less predictive) feature at the expense of the core (less available, more predictive) feature. We find that linear models are relatively unbiased, but introducing a single hidden layer with ReLU or Tanh units yields a bias. Our empirical findings are consistent with a theoretical account based on Neural Tangent Kernels. Finally, we study how models used in practice trade off predictivity and availability in naturalistic datasets, discovering availability manipulations which increase models' degree of shortcut bias. Taken together, these findings suggest that the propensity to learn shortcut features is a fundamental characteristic of deep nonlinear architectures warranting systematic study given its role in shaping how models solve tasks.

Chat is not available.