Poster
Rethinking the symmetry-preserving circuits for constrained variational quantum algorithms
Ge Yan · Hongxu Chen · Kaisen Pan · Junchi Yan
Halle B #4
With the arrival of the Noisy Intermediate-Scale Quantum (NISQ) era, Variational Quantum Algorithms (VQAs) have emerged as popular approaches to obtain possible quantum advantage in the relatively near future. In particular, how to effectively incorporate the common symmetries in physical systems as hard constraints in VQAs remains a critical and open question. In this paper, we revisit the Hamming Weight (HW) preserving ansatz and establish the links from ansatz to various symmetries and constraints, which both enlarges the usage of HW preserving ansatz and provides a coherent solution for constrained VQAs. Meanwhile, we utilize the quantum optimal control theory and quantum overparameterization theory to analyze the capability and expressivity of HW preserving ansatz and verify these theoretical results on unitary approximation problem. We conduct detailed numerical experiments on two well-studied symmetry-preserving problems, namely ground state energy estimation and feature selection in machine learning. The superior performance demonstrates the efficiency and supremacy of the proposed HW preserving ansatz on constrained VQAs.