Poster
Learning Hierarchical Polynomials with Three-Layer Neural Networks
Zihao Wang · Eshaan Nichani · Jason Lee
Halle B #129
Abstract:
We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form where is a degree polynomial and is a degree polynomial. This function class generalizes the single-index model, which corresponds to , and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree polynomials , a three-layer neural network trained via layerwise gradient descent on the square loss learns the target up to vanishing test error in samples and polynomial time. This is a strict improvement over kernel methods, which require samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of being a quadratic. When is indeed a quadratic, we achieve the information-theoretically optimal sample complexity , which is an improvement over prior work (Nichani et al., 2023) requiring a sample size of . Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature with samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
Chat is not available.