Skip to yearly menu bar Skip to main content


Poster

MOFI: Learning Image Representations from Noisy Entity Annotated Images

Wentao Wu · Aleksei Timofeev · Chen Chen · Bowen Zhang · Kun Duan · Shuangning Liu · Yantao Zheng · Jonathon Shlens · Xianzhi Du · Yinfei Yang

Halle B #190
[ ] [ Project Page ]
Thu 9 May 1:45 a.m. PDT — 3:45 a.m. PDT

Abstract:

We present MOFI, Manifold OF Images, a new vision foundation model designed to learn image representations from noisy entity annotated images. MOFI differs from previous work in two key aspects: 1. pre-training data, and 2. training recipe. Regarding data, we introduce a new approach to automatically assign entity labels to images from noisy image-text pairs. Our approach involves employing a named entity recognition model to extract entities from the alt-text, and then using a CLIP model to select the correct entities as labels of the paired image. It's a simple, cost-effective method that can scale to handle billions of web-mined image-text pairs. Through this method, we have created Image-to-Entities (I2E), a new dataset with 1 billion images and 2 million distinct entities, covering rich visual concepts in the wild. Building upon the I2E dataset, we study different training recipes like supervised pre-training, contrastive pre-training, and multi-task learning. For constrastive pre-training, we treat entity names as free-form text, and further enrich them with entity descriptions. Experiments show that supervised pre-training with large-scale fine-grained entity labels is highly effective for image retrieval tasks, and multi-task training further improves the performance. The final MOFI model achieves 86.66\% mAP on the challenging GPR1200 dataset, surpassing the previous state-of-the-art performance of 72.19% from OpenAI's CLIP model. Further experiments on zero-shot and linear probe image classification also show that MOFI outperforms a CLIP model trained on the original image-text data, demonstrating the effectiveness of the I2E dataset in learning strong image representations. We release our code and model weights at https://github.com/apple/ml-mofi.

Chat is not available.