Skip to yearly menu bar Skip to main content


Spotlight Poster

Online GNN Evaluation Under Test-time Graph Distribution Shifts

Xin Zheng · Dongjin Song · Qingsong Wen · Bo Du · Shirui Pan

Halle B #275
[ ]
Wed 8 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Evaluating the performance of a well-trained GNN model on real-world graphs is a pivotal step for reliable GNN online deployment and serving. Due to a lack of test node labels and unknown potential training-test graph data distribution shifts, conventional model evaluation encounters limitations in calculating performance metrics (e.g., test error) and measuring graph data-level discrepancies, particularly when the training graph used for developing GNNs remains unobserved during test time.In this paper, we study a new research problem, online GNN evaluation, which aims to provide valuable insights into the well-trained GNNs's ability to effectively generalize to real-world unlabeled graphs under the test-time graph distribution shifts.Concretely, we develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models. Through a novel GNN re-training strategy with a parameter-free optimality criterion, the proposed LeBeD comprehensively integrates learning behavior discrepancies from both node prediction and structure reconstruction perspectives.This enables the effective evaluation of the well-trained GNNs' ability to capture test node semantics and structural representations, making it an expressive metric for estimating the generalization error in online GNN evaluation.Extensive experiments on real-world test graphs under diverse graph distribution shifts could verify the effectiveness of the proposed method, revealing its strong correlation with ground-truth test errors on various well-trained GNN models.

Chat is not available.