Skip to yearly menu bar Skip to main content


Poster

A unique M-pattern for micro-expression spotting in long videos

Jinxuan Wang · Shiting Xu · Tong Zhang

Halle B #265

Abstract: Micro-expression spotting (MES) is challenging since the small magnitude of micro-expression (ME) makes them susceptible to global movements like head rotation. However, the unique movement pattern and inherent characteristics of ME allow them to be distinguished from other movements. Existing MES methods based on fixed reference frame degrade optical flow accuracy and are overly dependent on facial alignment. In this paper, we propose a skip-$k$-frame block-wise main directional mean optical flow (MDMO) feature for MES based on unfixed reference frame. By employing skip-$k$-frame strategy, we substantiate the existence of a distinct and exclusive movement pattern in ME, called M-pattern due to its feature curve resembling the letter `M'. Based on M-pattern and characteristics of ME, we then provide a novel spotting rules to precisely locate ME intervals. Block-wise MDMO feature is capable of removing global movements without compromising complete ME movements in the early feature extraction stage. Besides, A novel pixelmatch-based facial alignment algorithm with dynamic update of reference frame is proposed to better align facial images and reduce jitter between frames. Experimental results on CAS(ME)$^2$, SAMM-LV and CASME II validate the proposed methods are superior to the state-of-the-art methods.

Chat is not available.