Skip to yearly menu bar Skip to main content


Poster

Neural-Symbolic Recursive Machine for Systematic Generalization

Qing Li · Yixin Zhu · Yitao Liang · Yingnian Wu · Song-Chun Zhu · Siyuan Huang

Halle B #159

Abstract:

Current learning models often struggle with human-like systematic generalization, particularly in learning compositional rules from limited data and extrapolating them to novel combinations. We introduce the Neural-Symbolic Recursive Ma- chine ( NSR), whose core is a Grounded Symbol System ( GSS), allowing for the emergence of combinatorial syntax and semantics directly from training data. The NSR employs a modular design that integrates neural perception, syntactic parsing, and semantic reasoning. These components are synergistically trained through a novel deduction-abduction algorithm. Our findings demonstrate that NSR’s design, imbued with the inductive biases of equivariance and compositionality, grants it the expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve unparalleled systematic generalization. We evaluate NSR’s efficacy across four challenging benchmarks designed to probe systematic generalization capabilities: SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic reasoning, and a compositional machine translation task. The results affirm NSR ’s superiority over contemporary neural and hybrid models in terms of generalization and transferability.

Chat is not available.