Skip to yearly menu bar Skip to main content


Poster

Machine Unlearning for Image-to-Image Generative Models

Guihong Li · Hsiang Hsu · Chun-Fu Chen · Radu Marculescu

Halle B #194

Abstract:

Machine unlearning has emerged as a new paradigm to deliberately forget data samples from a given model in order to adhere to stringent regulations.However, existing machine unlearning methods have been primarily focused on classification models, leaving the landscape of unlearning for generative models relatively unexplored.This paper serves as a bridge, addressing the gap by providing a unifying framework of machine unlearning for image-to-image generative models.Within this framework, we propose a computationally-efficient algorithm, underpinned by rigorous theoretical analysis, that demonstrates negligible performance degradation on the retain samples, while effectively removing the information from the forget samples. Empirical studies on two large-scale datasets, ImageNet-1K and Places-365, further show that our algorithm does not rely on the availability of the retain samples, which further complies with data retention policy.To our best knowledge, this work is the first that represents systemic, theoretical, empirical explorations of machine unlearning specifically tailored for image-to-image generative models.

Chat is not available.