Poster
Most discriminative stimuli for functional cell type clustering
Max F. Burg · Thomas Zenkel · Michaela Vystrčilová · Jonathan Oesterle · Larissa Höfling · Konstantin F. Willeke · Jan Lause · Sarah Müller · Paul Fahey · Zhiwei Ding · Kelli Restivo · Shashwat Sridhar · Tim Gollisch · Philipp Berens · Andreas Tolias · Thomas Euler · Matthias Bethge · Alexander S Ecker
Halle B #62
Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selected stimuli, but this requires expert domain knowledge and biases the procedure towards previously known cell types. In the visual cortex, it is still unknown what functional types exist and how to identify them. Thus, for unbiased identification of the functional cell types in retina and visual cortex, new approaches are needed. Here we propose an optimization-based clustering approach using deep predictive models to obtain functional clusters of neurons using Most Discriminative Stimuli (MDS). Our approach alternates between stimulus optimization with cluster reassignment akin to an expectation-maximization algorithm. The algorithm recovers functional clusters in mouse retina, marmoset retina and macaque visual area V4. This demonstrates that our approach can successfully find discriminative stimuli across species, stages of the visual system and recording techniques. The resulting most discriminative stimuli can be used to assign functional cell types fast and on the fly, without the need to train complex predictive models or show a large natural scene dataset, paving the way for experiments that were previously limited by experimental time. Crucially, MDS are interpretable: they visualize the distinctive stimulus patterns that most unambiguously identify a specific type of neuron.