Skip to yearly menu bar Skip to main content


Going Beyond Neural Network Feature Similarity: The Network Feature Complexity and Its Interpretation Using Category Theory

Yiting Chen · Zhanpeng Zhou · Junchi Yan

Halle B #126
[ ]
Tue 7 May 1:45 a.m. PDT — 3:45 a.m. PDT


The behavior of neural networks still remains opaque, and a recently widely noted phenomenon is that networks often achieve similar performance when initialized with different random parameters. This phenomenon has attracted significant attention in measuring the similarity between features learned by distinct networks. However, feature similarity could be vague in describing the same feature since equivalent features hardly exist. In this paper, we expand the concept of equivalent feature and provide the definition of what we call functionally equivalent features. These features produce equivalent output under certain transformations. Using this definition, we aim to derive a more intrinsic metric for the so-called feature complexity regarding the redundancy of features learned by a neural network at each layer. We offer a formal interpretation of our approach through the lens of category theory, a well-developed area in mathematics. To quantify the feature complexity, we further propose an efficient algorithm named Iterative Feature Merging. Our experimental results validate our ideas and theories from various perspectives. We empirically demonstrate that the functionally equivalence widely exists among different features learned by the same neural network and we could reduce the number of parameters of the network without affecting the performance. We have also drawn several interesting empirical findings, including: 1) the larger the network, the more redundant features it learns; 2) in particular, we show how to prune the networks based on our finding using direct equivalent feature merging, without fine-tuning which is often needed in peer network pruning methods; 3) same structured networks with higher feature complexity achieve better performance; 4) through the layers of a neural network, the feature complexity first increase then decrease; 5) for the image classification task, a group of functionally equivalent features may correspond to a specific semantic meaning. Source code will be made publicly available.

Chat is not available.