Skip to yearly menu bar Skip to main content


Poster

Chameleon: Increasing Label-Only Membership Leakage with Adaptive Poisoning

Harsh Chaudhari · Giorgio Severi · Alina Oprea · Jonathan Ullman

Halle B #271

Abstract:

The integration of Machine Learning (ML) in numerous critical applications introduces a range of privacy concerns for individuals who provide their datasets for ML training purposes. One such privacy risk is Membership Inference (MI), in which an adversary seeks to determine whether a particular data point was included in the training dataset of a model. Current state-of-the-art MI approaches capitalize on access to the model’s predicted confidence scores to successfully perform membership inference, and employ data poisoning to further enhance their effectiveness. In this work, we focus on the less explored and more realistic label-only setting, where the model provides only the predicted label as output. We show that existing label-only attacks are ineffective at inferring membership in the low False Positive Rate (FPR) regime. To address this challenge, we propose a new attack Chameleon that leverages a novel data poisoning strategy and an efficient query selection method to achieve significantly more accurate membership inference than existing label-only attacks, especially for low FPRs.

Chat is not available.