Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

26 Results

<<   <   Page 2 of 3   >   >>
Poster
Wed 1:45 GOAt: Explaining Graph Neural Networks via Graph Output Attribution
Shengyao Lu · Keith G Mills · Jiao He · Bang Liu · Di Niu
Poster
Wed 1:45 Explaining Time Series via Contrastive and Locally Sparse Perturbations
Zichuan Liu · Yingying ZHANG · Tianchun Wang · Zefan Wang · Dongsheng Luo · Mengnan Du · Min Wu · Yi Wang · Chunlin Chen · Lunting Fan · Qingsong Wen
Poster
Fri 1:45 Beam Enumeration: Probabilistic Explainability For Sample Efficient Self-conditioned Molecular Design
Jeff Guo · Philippe Schwaller
Poster
Thu 7:30 Explaining Kernel Clustering via Decision Trees
Maximilian Fleissner · Leena Chennuru Vankadara · Debarghya Ghoshdastidar
Poster
Fri 7:30 Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Xu Zheng · Farhad Shirani · Tianchun Wang · Wei Cheng · Zhuomin Chen · Haifeng Chen · Hua Wei · Dongsheng Luo
Poster
Fri 7:30 Detecting, Explaining, and Mitigating Memorization in Diffusion Models
Yuxin Wen · Yuchen Liu · Chen Chen · Lingjuan Lyu
Poster
Thu 1:45 GNNBoundary: Towards Explaining Graph Neural Networks through the Lens of Decision Boundaries
Xiaoqi Wang · Han Wei Shen
Poster
Fri 1:45 GraphChef: Decision-Tree Recipes to Explain Graph Neural Networks
Peter Müller · Lukas Faber · Karolis Martinkus · Roger Wattenhofer
Poster
Wed 7:30 The Effective Horizon Explains Deep RL Performance in Stochastic Environments
Cassidy Laidlaw · Banghua Zhu · Stuart Russell · Anca Dragan
Poster
Thu 7:30 Learning the greatest common divisor: explaining transformer predictions
François Charton
Oral
Fri 7:15 Detecting, Explaining, and Mitigating Memorization in Diffusion Models
Yuxin Wen · Yuchen Liu · Chen Chen · Lingjuan Lyu
Poster
Thu 1:45 GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers through In-depth Benchmarking
Mert Kosan · Samidha Verma · Burouj Armgaan · Khushbu Pahwa · Ambuj K Singh · Sourav Medya · Sayan Ranu