Skip to yearly menu bar Skip to main content


Oral

Oral 2D

Halle A 3

Moderator: Feng Liu

Tue 7 May 6:45 a.m. PDT — 7:30 a.m. PDT
Abstract:
Chat is not available.

Tue 7 May 6:45 - 7:00 PDT

Outstanding Paper, Honorable Mention
Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN Expressiveness

Bohang Zhang · Jingchu Gai · Yiheng Du · Qiwei Ye · Di He · Liwei Wang

Designing expressive Graph Neural Networks (GNNs) is a fundamental topic in the graph learning community. So far, GNN expressiveness has been primarily assessed via the Weisfeiler-Lehman (WL) hierarchy. However, such an expressivity measure has notable limitations: it is inherently coarse, qualitative, and may not well reflect practical requirements (e.g., the ability to encode substructures). In this paper, we introduce a novel framework for quantitatively studying the expressiveness of GNN architectures, addressing all the above limitations. Specifically, we identify a fundamental expressivity measure termed homomorphism expressivity, which quantifies the ability of GNN models to count graphs under homomorphism. Homomorphism expressivity offers a complete and practical assessment tool: the completeness enables direct expressivity comparisons between GNN models, while the practicality allows for understanding concrete GNN abilities such as subgraph counting. By examining four classes of prominent GNNs as case studies, we derive simple, unified, and elegant descriptions of their homomorphism expressivity for both invariant and equivariant settings. Our results provide novel insights into a series of previous work, unify the landscape of different subareas in the community, and settle several open questions. Empirically, extensive experiments on both synthetic and real-world tasks verify our theory, showing that the practical performance of GNN models aligns well with the proposed metric.

Tue 7 May 7:00 - 7:15 PDT

Honorable Mention
The mechanistic basis of data dependence and abrupt learning in an in-context classification task

Gautam Reddy Nallamala

Transformer models exhibit in-context learning: the ability to accurately predict the response to a novel query based on illustrative examples in the input sequence, which contrasts with traditional in-weights learning of query-output relationships. What aspects of the training data distribution and architecture favor in-context vs in-weights learning? Recent work has shown that specific distributional properties inherent in language, such as burstiness, large dictionaries and skewed rank-frequency distributions, control the trade-off or simultaneous appearance of these two forms of learning. We first show that these results are recapitulated in a minimal attention-only network trained on a simplified dataset. In-context learning (ICL) is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning. By identifying progress measures that precede in-context learning and targeted experiments, we construct a two-parameter model of an induction head which emulates the full data distributional dependencies displayed by the attention-based network. A phenomenological model of induction head formation traces its abrupt emergence to the sequential learning of three nested logits enabled by an intrinsic curriculum. We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL, which is implemented by nested nonlinearities sequentially learned during training.