Skip to yearly menu bar Skip to main content


Oral

Oral 3B

Halle A 7

Moderator: Christian Wolf

Wed 8 May 1 a.m. PDT — 1:45 a.m. PDT
Abstract:
Chat is not available.

Wed 8 May 1:00 - 1:15 PDT

Unified Generative Modeling of 3D Molecules with Bayesian Flow Networks

Yuxuan Song · Jingjing Gong · Hao Zhou · Mingyue Zheng · Jingjing Liu · Wei-Ying Ma

Advanced generative model (\textit{e.g.}, diffusion model) derived from simplified continuity assumptions of data distribution, though showing promising progress, has been difficult to apply directly to geometry generation applications due to the \textit{multi-modality} and \textit{noise-sensitive} nature of molecule geometry. This work introduces Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions. GeoBFN maintains the SE-(3) invariant density modeling property by incorporating equivariant inter-dependency modeling on parameters of distributions and unifying the probabilistic modeling of different modalities. Through optimized training and sampling techniques, we demonstrate that GeoBFN achieves state-of-the-art performance on multiple 3D molecule generation benchmarks in terms of generation quality (90.87\% molecule stability in QM9 and 85.6\% atom stability in GEOM-DRUG\footnote{The scores are reported at 1k sampling steps for fair comparison, and our scores could be further improved if sampling sufficiently longer steps.}). GeoBFN can also conduct sampling with any number of steps to reach an optimal trade-off between efficiency and quality (\textit{e.g.}, 20$\times$ speedup without sacrificing performance).

Wed 8 May 1:15 - 1:30 PDT

Learning Energy Decompositions for Partial Inference in GFlowNets

Hyosoon Jang · Minsu Kim · Sungsoo Ahn

This paper studies generative flow networks (GFlowNets) to sample objects from the Boltzmann energy distribution via a sequence of actions. In particular, we focus on improving GFlowNet with partial inference: training flow functions with the evaluation of the intermediate states or transitions. To this end, the recently developed forward-looking GFlowNet reparameterizes the flow functions based on evaluating the energy of intermediate states. However, such an evaluation of intermediate energies may (i) be too expensive or impossible to evaluate and (ii) even provide misleading training signals under large energy fluctuations along the sequence of actions. To resolve this issue, we propose learning energy decompositions for GFlowNets (LED-GFN). Our main idea is to (i) decompose the energy of an object into learnable potential functions defined on state transitions and (ii) reparameterize the flow functions using the potential functions. In particular, to produce informative local credits, we propose to regularize the potential to change smoothly over the sequence of actions. It is also noteworthy that training GFlowNet with our learned potential can preserve the optimal policy. We empirically verify the superiority of LED-GFN in five problems including the generation of unstructured and maximum independent sets, molecular graphs, and RNA sequences.

Wed 8 May 1:30 - 1:45 PDT

Cameras as Rays: Pose Estimation via Ray Diffusion

Jason Zhang · Amy Lin · Moneish Kumar · Tzu-Hsuan Yang · Deva Ramanan · Shubham Tulsiani

Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views (<10). In contrast to existing approaches that pursue top-down prediction of global parametrizations of camera extrinsics, we propose a distributed representation of camera pose that treats a camera as a bundle of rays. This representation allows for a tight coupling with spatial image features improving pose precision. We observe that this representation is naturally suited for set-level transformers and develop a regression-based approach that maps image patches to corresponding rays. To capture the inherent uncertainties in sparse-view pose inference, we adapt this approach to learn a denoising diffusion model which allows us to sample plausible modes while improving performance. Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D while generalizing to unseen object categories and in-the-wild captures.