Skip to yearly menu bar Skip to main content


Oral 4A

Halle A 8 - 9

Moderator: Sercan Arik

Wed 8 May 6:45 a.m. PDT — 7:30 a.m. PDT
Chat is not available.

Wed 8 May 7:00 - 7:15 PDT

SWE-bench: Can Language Models Resolve Real-world Github Issues?

Carlos E Jimenez · John Yang · Alexander Wettig · Shunyu Yao · Kexin Pei · Ofir Press · Karthik Narasimhan

Language models have outpaced our ability to evaluate them effectively, but for their future development it is essential to study the frontier of their capabilities. We find real-world software engineering to be a rich, sustainable, and challenging testbed for evaluating the next generation of language models. To this end, we introduce SWE-bench, an evaluation framework consisting of 2,294 software engineering problems drawn from real GitHub issues and corresponding pull requests across 12 popular Python repositories. Given a codebase along with a description of an issue to be resolved, a language model is tasked with editing the codebase to address the issue. Resolving issues in SWE-bench frequently requires understanding and coordinating changes across multiple functions, classes, and even files simultaneously, calling for models to interact with execution environments, process extremely long contexts and perform complex reasoning that goes far beyond traditional code generation tasks. Our evaluations show that both state-of-the-art proprietary models and our fine-tuned model SWE-Llama can resolve only the simplest issues. The best-performing model, Claude 2, is able to solve a mere 1.96% of the issues. Advances on SWE-bench represent steps towards LMs that are more practical, intelligent, and autonomous.

Wed 8 May 7:15 - 7:30 PDT

Batched Low-Rank Adaptation of Foundation Models

Yeming Wen · Swarat Chaudhuri

Low-Rank Adaptation (LoRA) has recently gained attention for fine-tuning foundation models by incorporating trainable low-rank matrices, thereby reducing the number of trainable parameters. While \lora/ offers numerous advantages, its applicability for real-time serving to a diverse and global user base is constrained by its incapability to handle multiple task-specific adapters efficiently. This imposes a performance bottleneck in scenarios requiring personalized, task-specific adaptations for each incoming request.To address this, we introduce FLoRA (Fast LoRA), a framework in which each input example in a minibatch can be associated with its unique low-rank adaptation weights, allowing for efficient batching of heterogeneous requests. We empirically demonstrate that \flora/ retains the performance merits of \lora/, showcasing competitive results on the MultiPL-E code generation benchmark spanning over 8 languages and a multilingual speech recognition task across 6 languages.