Skip to yearly menu bar Skip to main content


Oral

Oral 6B

Halle A 7

Moderator: Yuki Asano

Thu 9 May 6:45 a.m. PDT — 7:30 a.m. PDT
Abstract:
Chat is not available.

Thu 9 May 6:45 - 7:00 PDT

GNNCert: Deterministic Certification of Graph Neural Networks against Adversarial Perturbations

Zaishuo Xia · Han Yang · Binghui Wang · Jinyuan Jia

Graph classification, which aims to predict a label for a graph, has many real-world applications such as malware detection, fraud detection, and healthcare. However, many studies show an attacker could carefully perturb the structure and/or node features in a graph such that a graph classifier misclassifies the perturbed graph. Such vulnerability impedes the deployment of graph classification in security/safety-critical applications. Existing empirical defenses lack formal robustness guarantees and could be broken by adaptive or unknown attacks. Existing provable defenses have the following limitations: 1) they achieve sub-optimal robustness guarantees for graph structure perturbation, 2) they cannot provide robustness guarantees for arbitrarily node feature perturbations, 3) their robustness guarantees are probabilistic, meaning they could be incorrect with a non-zero probability, and 4) they incur large computation costs. We aim to address those limitations in this work. We propose GNNCert, a certified defense against both graph structure and node feature perturbations for graph classification. Our GNNCert provably predicts the same label for a graph when the number of perturbed edges and the number of nodes with perturbed features are bounded. Our results on 8 benchmark datasets show that GNNCert outperforms three state-of-the-art methods.

Thu 9 May 7:00 - 7:15 PDT

Honorable Mention
Proving Test Set Contamination in Black-Box Language Models

Yonatan Oren · Nicole Meister · Niladri Chatterji · Faisal Ladhak · Tatsunori Hashimoto

Large language models are trained on vast amounts of internet data, prompting concerns that they have memorized public benchmarks. Detecting this type of contamination is challenging because the pretraining data used by proprietary models are often not publicly accessible.We propose a procedure for detecting test set contamination of language models with exact false positive guarantees and without access to pretraining data or model weights. Our approach leverages the fact that when there is no data contamination, all orderings of an exchangeable benchmark should be equally likely. In contrast, the tendency for language models to memorize example order means that a contaminated language model will find certain canonical orderings to be much more likely than others. Our test flags potential contamination whenever the likelihood of a canonically ordered benchmark dataset is significantly higher than the likelihood after shuffling the examples.We demonstrate that our procedure is sensitive enough to reliably detect contamination in challenging situations, including models as small as 1.4 billion parameters, on small test sets only 1000 examples, and datasets that appear only a few times in the pretraining corpus. Finally, we evaluate LLaMA-2 to apply our test in a realistic setting and find our results to be consistent with existing contamination evaluations.

Thu 9 May 7:15 - 7:30 PDT

LLMCarbon: Modeling the End-to-End Carbon Footprint of Large Language Models

Ahmad Faiz · Sotaro Kaneda · Ruhan Wang · Rita Osi · Prateek Sharma · Fan Chen · Lei Jiang

The carbon footprint associated with large language models (LLMs) is a significant concern, encompassing emissions from their training, inference, experimentation, and storage processes, including operational and embodied carbon emissions. An essential aspect is accurately estimating the carbon impact of emerging LLMs even before their training, which heavily relies on GPU usage. Existing studies have reported the carbon footprint of LLM training, but only one tool, mlco2, can predict the carbon footprint of new neural networks prior to physical training. However, mlco2 has several serious limitations. It cannot extend its estimation to dense or mixture-of-experts (MoE) LLMs, disregards critical architectural parameters, focuses solely on GPUs, and cannot model embodied carbon footprints. Addressing these gaps, we introduce \textit{\carb}, an end-to-end carbon footprint projection model designed for both dense and MoE LLMs. Compared to mlco2, \carb~significantly enhances the accuracy of carbon footprint estimations for various LLMs. The source code is released at \url{https://github.com/SotaroKaneda/MLCarbon}.