Skip to yearly menu bar Skip to main content


Poster

Mastering Atari with Discrete World Models

Danijar Hafner · Timothy Lillicrap · Mohammad Norouzi · Jimmy Ba

Keywords: [ reinforcement learning ] [ actor critic ] [ model-based reinforcement learning ] [ planning ] [ atari ] [ World Models ]


Abstract:

Intelligent agents need to generalize from past experience to achieve goals in complex environments. World models facilitate such generalization and allow learning behaviors from imagined outcomes to increase sample-efficiency. While learning world models from image inputs has recently become feasible for some tasks, modeling Atari games accurately enough to derive successful behaviors has remained an open challenge for many years. We introduce DreamerV2, a reinforcement learning agent that learns behaviors purely from predictions in the compact latent space of a powerful world model. The world model uses discrete representations and is trained separately from the policy. DreamerV2 constitutes the first agent that achieves human-level performance on the Atari benchmark of 55 tasks by learning behaviors inside a separately trained world model. With the same computational budget and wall-clock time, Dreamer V2 reaches 200M frames and exceeds the final performance of the top single-GPU agents IQN and Rainbow.

Chat is not available.