Poster
Understanding the effects of data parallelism and sparsity on neural network training
Namhoon Lee · Thalaiyasingam Ajanthan · Philip Torr · Martin Jaggi
Virtual
Keywords: [ sparsity ] [ data parallelism ] [ neural network training ]
We study two factors in neural network training: data parallelism and sparsity; here, data parallelism means processing training data in parallel using distributed systems (or equivalently increasing batch size), so that training can be accelerated; for sparsity, we refer to pruning parameters in a neural network model, so as to reduce computational and memory cost. Despite their promising benefits, however, understanding of their effects on neural network training remains elusive. In this work, we first measure these effects rigorously by conducting extensive experiments while tuning all metaparameters involved in the optimization. As a result, we find across various workloads of data set, network model, and optimization algorithm that there exists a general scaling trend between batch size and number of training steps to convergence for the effect of data parallelism, and further, difficulty of training under sparsity. Then, we develop a theoretical analysis based on the convergence properties of stochastic gradient methods and smoothness of the optimization landscape, which illustrates the observed phenomena precisely and generally, establishing a better account of the effects of data parallelism and sparsity on neural network training.