Poster
|
Tue 1:00
|
Lossless Compression of Structured Convolutional Models via Lifting
Gustav Sourek · Filip Zelezny · Ondrej Kuzelka
|
|
Poster
|
Thu 1:00
|
Learning continuous-time PDEs from sparse data with graph neural networks
Valerii Iakovlev · Markus Heinonen · Harri Lähdesmäki
|
|
Poster
|
Mon 17:00
|
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang · Robin Walters · Rose Yu
|
|
Poster
|
Thu 1:00
|
A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima
Zeke Xie · Issei Sato · Masashi Sugiyama
|
|
Spotlight
|
Tue 5:18
|
Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize
Nils Wandel · Michael Weinmann · Reinhard Klein
|
|
Poster
|
Tue 1:00
|
Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize
Nils Wandel · Michael Weinmann · Reinhard Klein
|
|
Poster
|
Tue 17:00
|
Usable Information and Evolution of Optimal Representations During Training
Michael Kleinman · Alessandro Achille · Daksh Idnani · Jonathan Kao
|
|
Poster
|
Mon 9:00
|
Planning from Pixels using Inverse Dynamics Models
Keiran Paster · Sheila McIlraith · Jimmy Ba
|
|
Poster
|
Wed 9:00
|
HyperDynamics: Meta-Learning Object and Agent Dynamics with Hypernetworks
Zhou Xian · Shamit Lal · Hsiao-Yu Tung · Anthony Platanios · Katerina Fragkiadaki
|
|
Poster
|
Tue 1:00
|
PDE-Driven Spatiotemporal Disentanglement
Jérémie DONA · Jean-Yves Franceschi · sylvain lamprier · patrick gallinari
|
|
Poster
|
Tue 1:00
|
Model-based micro-data reinforcement learning: what are the crucial model properties and which model to choose?
Balázs Kégl · Gabriel Hurtado · Albert Thomas
|
|
Poster
|
Tue 17:00
|
DDPNOpt: Differential Dynamic Programming Neural Optimizer
Guan-Horng Liu · Tianrong Chen · Evangelos Theodorou
|
|