Workshop
|
Fri 10:51
|
"Bias and Generalization of Deep Generative Models" by Stefano Ermon, Stanford University
Stefano Ermon
|
|
Poster
|
Tue 9:00
|
Physics-aware, probabilistic model order reduction with guaranteed stability
Sebastian Kaltenbach · PS Koutsourelakis
|
|
Poster
|
Tue 1:00
|
What they do when in doubt: a study of inductive biases in seq2seq learners
Kharitonov Eugene · Rahma Chaabouni
|
|
Poster
|
Mon 9:00
|
Learning from others' mistakes: Avoiding dataset biases without modeling them
Victor Sanh · Thomas Wolf · Yonatan Belinkov · Alexander M Rush
|
|
Poster
|
Thu 9:00
|
Noise or Signal: The Role of Image Backgrounds in Object Recognition
Kai Xiao · Logan Engstrom · Andrew Ilyas · Aleksander Madry
|
|
Poster
|
Mon 9:00
|
Predicting Inductive Biases of Pre-Trained Models
Charles Lovering · Rohan Jha · Tal Linzen · Ellie Pavlick
|
|
Poster
|
Thu 9:00
|
Rethinking Soft Labels for Knowledge Distillation: A Bias–Variance Tradeoff Perspective
Helong Zhou · Liangchen Song · Jiajie Chen · Ye Zhou · Guoli Wang · Junsong Yuan · Qian Zhang
|
|
Poster
|
Tue 1:00
|
A Distributional Approach to Controlled Text Generation
Muhammad Khalifa · Hady Elsahar · Marc Dymetman
|
|
Oral
|
Mon 4:15
|
A Distributional Approach to Controlled Text Generation
Muhammad Khalifa · Hady Elsahar · Marc Dymetman
|
|
Poster
|
Thu 9:00
|
Variational Information Bottleneck for Effective Low-Resource Fine-Tuning
Rabeeh Karimi Mahabadi · Yonatan Belinkov · James Henderson
|
|