firstbacksecondback
23 Results
Poster
|
Wed 17:00 |
A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks Renjie Liao · Raquel Urtasun · Richard Zemel |
|
Poster
|
Wed 1:00 |
Interpretable Neural Architecture Search via Bayesian Optimisation with Weisfeiler-Lehman Kernels Binxin Ru · Xingchen Wan · Xiaowen Dong · Michael Osborne |
|
Poster
|
Wed 1:00 |
Robust Learning of Fixed-Structure Bayesian Networks in Nearly-Linear Time Yu Cheng · Honghao Lin |
|
Poster
|
Mon 1:00 |
Neural Approximate Sufficient Statistics for Implicit Models Yanzhi Chen · Dinghuai Zhang · Michael U Gutmann · Aaron Courville · Zhanxing Zhu |
|
Poster
|
Tue 9:00 |
Scalable Bayesian Inverse Reinforcement Learning Alex Chan · Mihaela van der Schaar |
|
Poster
|
Wed 17:00 |
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly Yuchen Jin · Tianyi Zhou · Liangyu Zhao · Yibo Zhu · Chuanxiong Guo · Marco Canini · Arvind Krishnamurthy |
|
Poster
|
Tue 1:00 |
Activation-level uncertainty in deep neural networks Pablo Morales-Alvarez · Daniel Hernández-Lobato · Rafael Molina · José Miguel Hernández Lobato |
|
Poster
|
Tue 9:00 |
Uncertainty-aware Active Learning for Optimal Bayesian Classifier Guang Zhao · Edward Dougherty · Byung-Jun Yoon · Francis Alexander · Xiaoning Qian |
|
Spotlight
|
Wed 5:35 |
Neural Approximate Sufficient Statistics for Implicit Models Yanzhi Chen · Dinghuai Zhang · Michael U Gutmann · Aaron Courville · Zhanxing Zhu |
|
Poster
|
Tue 17:00 |
FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning Hong-You Chen · Wei-Lun Chao |
|
Poster
|
Mon 9:00 |
A statistical theory of cold posteriors in deep neural networks Laurence Aitchison |
|
Poster
|
Wed 9:00 |
Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit Ben Adlam · Jaehoon Lee · Lechao Xiao · Jeffrey Pennington · Jasper Snoek |