Skip to yearly menu bar Skip to main content


Search All 2021 Events
 

31 Results

<<   <   Page 1 of 3   >   >>
Poster
Mon 17:00 Proximal Gradient Descent-Ascent: Variable Convergence under KŁ Geometry
Ziyi Chen · Yi Zhou · Tengyu Xu · Yingbin Liang
Poster
Wed 17:00 Local Convergence Analysis of Gradient Descent Ascent with Finite Timescale Separation
Tanner Fiez · Lillian J Ratliff
Oral
Thu 0:30 Optimal Rates for Averaged Stochastic Gradient Descent under Neural Tangent Kernel Regime
Atsushi Nitanda · Taiji Suzuki
Spotlight
Wed 5:15 Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods
Taiji Suzuki · Akiyama Shunta
Poster
Wed 1:00 Byzantine-Resilient Non-Convex Stochastic Gradient Descent
Zeyuan Allen-Zhu · Faeze Ebrahimianghazani · Jerry Li · Dan Alistarh
Poster
Thu 9:00 Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei · Chung-Wei Lee · Mengxiao Zhang · Haipeng Luo
Poster
Tue 9:00 On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel Smith · Benoit Dherin · David Barrett · Soham De
Poster
Mon 9:00 Multi-Level Local SGD: Distributed SGD for Heterogeneous Hierarchical Networks
Timothy Castiglia · Anirban Das · Stacy Patterson
Poster
Mon 9:00 On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
Poster
Mon 17:00 When does preconditioning help or hurt generalization?
Shun-ichi Amari · Jimmy Ba · Roger Grosse · Xuechen Li · Atsushi Nitanda · Taiji Suzuki · Denny Wu · Ji Xu
Spotlight
Wed 20:20 Understanding the role of importance weighting for deep learning
Da Xu · Yuting Ye · Chuanwei Ruan
Poster
Mon 1:00 On the Universality of the Double Descent Peak in Ridgeless Regression
David Holzmüller