Topic Keywords

[ $\ell_1$ norm ] [ $f-$divergence ] [ 3D Convolution ] [ 3D deep learning ] [ 3D generation ] [ 3d point cloud ] [ 3D Reconstruction ] [ 3D scene understanding ] [ 3D shape representations ] [ 3D shapes learning ] [ 3D vision ] [ 3D Vision ] [ abstract reasoning ] [ abstract rules ] [ Acceleration ] [ accuracy ] [ acoustic condition modeling ] [ Action localization ] [ action recognition ] [ activation maximization ] [ activation strategy. ] [ Active learning ] [ Active Learning ] [ AdaBoost ] [ adaptive heavy-ball methods ] [ Adaptive Learning ] [ adaptive methods ] [ adaptive optimization ] [ ADMM ] [ Adversarial Accuracy ] [ Adversarial Attack ] [ Adversarial Attacks ] [ adversarial attacks/defenses ] [ Adversarial computer programs ] [ Adversarial Defense ] [ Adversarial Example Detection ] [ Adversarial Examples ] [ Adversarial Learning ] [ Adversarial Machine Learning ] [ adversarial patch ] [ Adversarial robustness ] [ Adversarial Robustness ] [ Adversarial training ] [ Adversarial Training ] [ Adversarial Transferability ] [ aesthetic assessment ] [ affine parameters ] [ age estimation ] [ Aggregation Methods ] [ AI for earth science ] [ ALFRED ] [ Algorithm ] [ algorithmic fairness ] [ Algorithmic fairness ] [ Algorithms ] [ alignment ] [ alignment of semantic and visual space ] [ amortized inference ] [ Analogies ] [ annotation artifacts ] [ anomaly-detection ] [ Anomaly detection with deep neural networks ] [ anonymous walk ] [ appearance transfer ] [ approximate constrained optimization ] [ approximation ] [ Approximation ] [ Architectures ] [ argoverse ] [ Artificial Integlligence ] [ ASR ] [ assistive technology ] [ associative memory ] [ Associative Memory ] [ asynchronous parallel algorithm ] [ Atari ] [ Attention ] [ Attention Mechanism ] [ Attention Modules ] [ attractors ] [ attributed walks ] [ Auction Theory ] [ audio understanding ] [ Audio-Visual ] [ audio visual learning ] [ audio-visual representation ] [ audio-visual representation learning ] [ Audio-visual sound separation ] [ audiovisual synthesis ] [ augmented deep reinforcement learning ] [ autodiff ] [ Autoencoders ] [ automated data augmentation ] [ automated machine learning ] [ automatic differentiation ] [ AutoML ] [ autonomous learning ] [ autoregressive language model ] [ Autoregressive Models ] [ AutoRL ] [ auxiliary information ] [ auxiliary latent variable ] [ Auxiliary Learning ] [ auxiliary task ] [ Average-case Analysis ] [ aversarial examples ] [ avoid knowledge leaking ] [ backdoor attack ] [ Backdoor Attacks ] [ Backdoor Defense ] [ Backgrounds ] [ backprop ] [ back translation ] [ backward error analysis ] [ bagging ] [ batchnorm ] [ Batch Normalization ] [ batch reinforcement learning ] [ Batch Reinforcement Learning ] [ batch selection ] [ Bayesian ] [ Bayesian classification ] [ Bayesian inference ] [ Bayesian Inference ] [ Bayesian networks ] [ Bayesian Neural Networks ] [ behavior cloning ] [ belief-propagation ] [ Benchmark ] [ benchmarks ] [ benign overfitting ] [ bert ] [ BERT ] [ beta-VAE ] [ better generalization ] [ biased sampling ] [ biases ] [ Bias in Language Models ] [ bidirectional ] [ bilevel optimization ] [ Bilinear games ] [ Binary Embeddings ] [ Binary Neural Networks ] [ binaural audio ] [ binaural speech ] [ biologically plausible ] [ Biometrics ] [ bisimulation ] [ Bisimulation ] [ bisimulation metrics ] [ bit-flip ] [ bit-level sparsity ] [ blind denoising ] [ blind spots ] [ block mdp ] [ boosting ] [ bottleneck ] [ bptt ] [ branch and bound ] [ Brownian motion ] [ Budget-Aware Pruning ] [ Budget constraints ] [ Byzantine resilience ] [ Byzantine SGD ] [ CAD modeling ] [ calibration ] [ Calibration ] [ calibration measure ] [ cancer research ] [ Capsule Networks ] [ Catastrophic forgetting ] [ Catastrophic Forgetting ] [ Causal Inference ] [ Causality ] [ Causal network ] [ certificate ] [ certified defense ] [ Certified Robustness ] [ challenge sets ] [ change of measure ] [ change point detection ] [ channel suppressing ] [ Channel Tensorization ] [ Channel-Wise Approximated Activation ] [ Chaos ] [ chebyshev polynomial ] [ checkpointing ] [ Checkpointing ] [ chemistry ] [ CIFAR ] [ Classification ] [ class imbalance ] [ clean-label ] [ Clustering ] [ Clusters ] [ CNN ] [ CNNs ] [ Code Compilation ] [ Code Representations ] [ Code Structure ] [ code summarization ] [ Code Summarization ] [ Cognitively-inspired Learning ] [ cold posteriors ] [ collaborative learning ] [ Combinatorial optimization ] [ common object counting ] [ commonsense question answering ] [ Commonsense Reasoning ] [ Communication Compression ] [ co-modulation ] [ complete verifiers ] [ complex query answering ] [ Composition ] [ compositional generalization ] [ compositional learning ] [ compositional task ] [ Compressed videos ] [ Compressing Deep Networks ] [ Compression ] [ computation ] [ computational biology ] [ Computational Biology ] [ computational complexity ] [ Computational imaging ] [ Computational neuroscience ] [ Computational resources ] [ computer graphics ] [ Computer Vision ] [ concentration ] [ Concentration of Measure ] [ Concept-based Explanation ] [ concept drift ] [ Concept Learning ] [ conditional expectation ] [ Conditional GANs ] [ Conditional Generation ] [ Conditional generative adversarial networks ] [ conditional layer normalization ] [ Conditional Neural Processes ] [ Conditional Risk Minimization ] [ Conditional Sampling ] [ conditional text generation ] [ Conferrability ] [ confidentiality ] [ conformal inference ] [ conformal prediction ] [ conjugacy ] [ conservation law ] [ consistency ] [ consistency training ] [ Consistency Training ] [ constellation models ] [ constrained beam search ] [ Constrained optimization ] [ constrained RL ] [ constraints ] [ constraint satisfaction ] [ contact tracing ] [ Contextual Bandits ] [ Contextual embedding space ] [ Continual learning ] [ Continual Learning ] [ continuation method ] [ continuous and scalar conditions ] [ continuous case ] [ Continuous Control ] [ continuous convolution ] [ continuous games ] [ continuous normalizing flow ] [ continuous time ] [ Continuous-time System ] [ continuous treatment effect ] [ contrastive divergence ] [ Contrastive learning ] [ Contrastive Learning ] [ Contrastive Methods ] [ contrastive representation learning ] [ control barrier function ] [ controlled generation ] [ Controlled NLG ] [ Convergence ] [ Convergence Analysis ] [ convex duality ] [ Convex optimization ] [ ConvNets ] [ convolutional kernel methods ] [ Convolutional Layer ] [ convolutional models ] [ Convolutional Networks ] [ copositive programming ] [ corruptions ] [ COST ] [ Counterfactual inference ] [ counterfactuals ] [ Counterfactuals ] [ covariant neural networks ] [ covid-19 ] [ COVID-19 ] [ Cross-domain ] [ cross-domain few-shot learning ] [ cross-domain video generation ] [ cross-episode attention ] [ cross-fitting ] [ cross-lingual pretraining ] [ Cryptographic inference ] [ cultural transmission ] [ Curriculum Learning ] [ curse of memory ] [ curvature estimates ] [ custom voice ] [ cycle-consistency regularization ] [ cycle-consistency regularizer ] [ DAG ] [ DARTS stability ] [ Data augmentation ] [ Data Augmentation ] [ data cleansing ] [ Data-driven modeling ] [ data-efficient learning ] [ data-efficient RL ] [ Data Flow ] [ data labeling ] [ data parallelism ] [ Data Poisoning ] [ Data Protection ] [ Dataset ] [ dataset bias ] [ dataset compression ] [ dataset condensation ] [ dataset corruption ] [ dataset distillation ] [ dataset summarization ] [ data structures ] [ debiased training ] [ debugging ] [ Decentralized Optimization ] [ decision boundary geometry ] [ decision trees ] [ declarative knowledge ] [ deep-anomaly-detection ] [ Deep Architectures ] [ Deep denoising priors ] [ deep embedding ] [ Deep Ensembles ] [ deep equilibrium models ] [ Deep Equilibrium Models ] [ Deepfake ] [ deep FBSDEs ] [ Deep Gaussian Processes ] [ Deep generative model ] [ Deep generative modeling ] [ Deep generative models ] [ deeplearning ] [ Deep learning ] [ Deep Learning ] [ deep learning dynamics ] [ Deep Learning Theory ] [ deep network training ] [ deep neural network ] [ deep neural networks. ] [ Deep Neural Networks ] [ deep one-class classification ] [ deep Q-learning ] [ Deep reinforcement learning ] [ Deep Reinforcement Learning ] [ deep ReLU networks ] [ Deep residual neural networks ] [ deep RL ] [ deep sequence model ] [ deepset ] [ Deep Sets ] [ Deformation Modeling ] [ delay ] [ Delay differential equations ] [ denoising score matching ] [ Dense Retrieval ] [ Density estimation ] [ Density Estimation ] [ Density ratio estimation ] [ dependency based method ] [ deployment-efficiency ] [ depression ] [ depth separation ] [ descent ] [ description length ] [ determinantal point processes ] [ Device Placement ] [ dialogue state tracking ] [ differentiable optimization ] [ Differentiable physics ] [ Differentiable Physics ] [ Differentiable program generator ] [ differentiable programming ] [ Differentiable rendering ] [ Differentiable simulation ] [ differential dynamica programming ] [ differential equations ] [ Differential Geometry ] [ differentially private deep learning ] [ Differential Privacy ] [ diffusion probabilistic models ] [ diffusion process ] [ dimension ] [ Directed Acyclic Graphs ] [ Dirichlet form ] [ Discrete Optimization ] [ discretization error ] [ disentangled representation learning ] [ Disentangled representation learning ] [ Disentanglement ] [ distance ] [ Distillation ] [ distinct elements ] [ Distributed ] [ distributed deep learning ] [ distributed inference ] [ Distributed learning ] [ distributed machine learning ] [ Distributed ML ] [ Distributed Optimization ] [ distributional robust optimization ] [ distribution estimation ] [ distribution shift ] [ diverse strategies ] [ diverse video generation ] [ Diversity denoising ] [ Diversity Regularization ] [ DNN ] [ DNN compression ] [ document analysis ] [ document classification ] [ document retrieval ] [ domain adaptation theory ] [ Domain Adaption ] [ Domain Generalization ] [ domain randomization ] [ Domain Translation ] [ double descent ] [ Double Descent ] [ doubly robustness ] [ Doubly-weighted Laplace operator ] [ Dropout ] [ drug discovery ] [ Drug discovery ] [ dst ] [ Dual-mode ASR ] [ Dueling structure ] [ Dynamical Systems ] [ dynamic computation graphs ] [ dynamics ] [ dynamics prediction ] [ dynamic systems ] [ Early classification ] [ Early pruning ] [ early stopping ] [ EBM ] [ Edit ] [ EEG ] [ effective learning rate ] [ Efficiency ] [ Efficient Attention Mechanism ] [ efficient deep learning ] [ Efficient Deep Learning ] [ Efficient Deep Learning Inference ] [ Efficient ensembles ] [ efficient inference ] [ efficient inference methods ] [ Efficient Inference Methods ] [ EfficientNets ] [ efficient network ] [ Efficient Networks ] [ Efficient training ] [ Efficient Training ] [ efficient training and inference. ] [ egocentric ] [ eigendecomposition ] [ Eigenspectrum ] [ ELBO ] [ electroencephalography ] [ EM ] [ Embedding Models ] [ Embedding Size ] [ Embodied Agents ] [ embodied vision ] [ emergent behavior ] [ empirical analysis ] [ Empirical Game Theory ] [ empirical investigation ] [ Empirical Investigation ] [ empirical study ] [ empowerment ] [ Encoder layer fusion ] [ end-to-end entity linking ] [ End-to-End Object Detection ] [ Energy ] [ Energy-Based GANs ] [ energy based model ] [ energy-based model ] [ Energy-based model ] [ energy based models ] [ Energy-based Models ] [ Energy Based Models ] [ Energy-Based Models ] [ Energy Score ] [ ensemble ] [ Ensemble ] [ ensemble learning ] [ ensembles ] [ Ensembles ] [ entity disambiguation ] [ entity linking ] [ entity retrieval ] [ entropic algorithms ] [ Entropy Maximization ] [ Entropy Model ] [ entropy regularization ] [ epidemiology ] [ episode-level pretext task ] [ episodic training ] [ equilibrium ] [ equivariant ] [ equivariant neural network ] [ ERP ] [ Evaluation ] [ evaluation of interpretability ] [ Event localization ] [ evolution ] [ Evolutionary algorithm ] [ Evolutionary Algorithm ] [ Evolutionary Algorithms ] [ Excess risk ] [ experience replay buffer ] [ experimental evaluation ] [ Expert Models ] [ Explainability ] [ explainable ] [ Explainable AI ] [ Explainable Model ] [ explaining decision-making ] [ explanation method ] [ explanations ] [ Explanations ] [ Exploration ] [ Exponential Families ] [ exponential tilting ] [ exposition ] [ external memory ] [ Extrapolation ] [ extremal sector ] [ facial recognition ] [ factor analysis ] [ factored MDP ] [ Factored MDP ] [ fairness ] [ Fairness ] [ faithfulness ] [ fast DNN inference ] [ fast learning rate ] [ fast-mapping ] [ fast weights ] [ FAVOR ] [ Feature Attribution ] [ feature propagation ] [ features ] [ feature visualization ] [ Feature Visualization ] [ Federated learning ] [ Federated Learning ] [ Few Shot ] [ few-shot concept learning ] [ few-shot domain generalization ] [ Few-shot learning ] [ Few Shot Learning ] [ fine-tuning ] [ finetuning ] [ Fine-tuning ] [ Finetuning ] [ fine-tuning stability ] [ Fingerprinting ] [ First-order Methods ] [ first-order optimization ] [ fisher ratio ] [ flat minima ] [ Flexibility ] [ flow graphs ] [ Fluid Dynamics ] [ Follow-the-Regularized-Leader ] [ Formal Verification ] [ forward mode ] [ Fourier Features ] [ Fourier transform ] [ framework ] [ Frobenius norm ] [ from-scratch ] [ frontend ] [ fruit fly ] [ fully-connected ] [ Fully-Connected Networks ] [ future frame generation ] [ future link prediction ] [ fuzzy tiling activation function ] [ Game Decomposition ] [ Game Theory ] [ GAN ] [ GAN compression ] [ GANs ] [ Garbled Circuits ] [ Gaussian Copula ] [ Gaussian Graphical Model ] [ Gaussian Isoperimetric Inequality ] [ Gaussian mixture model ] [ Gaussian process ] [ Gaussian Process ] [ Gaussian Processes ] [ gaussian process priors ] [ GBDT ] [ generalisation ] [ Generalization ] [ Generalization Bounds ] [ generalization error ] [ Generalization Measure ] [ Generalization of Reinforcement Learning ] [ generalized ] [ generalized Girsanov theorem ] [ Generalized PageRank ] [ Generalized zero-shot learning ] [ Generation ] [ Generative Adversarial Network ] [ Generative Adversarial Networks ] [ generative art ] [ Generative Flow ] [ Generative Model ] [ Generative modeling ] [ Generative Modeling ] [ generative modelling ] [ Generative Modelling ] [ Generative models ] [ Generative Models ] [ genetic programming ] [ Geodesic-Aware FC Layer ] [ geometric ] [ Geometric Deep Learning ] [ G-invariance regularization ] [ global ] [ global optima ] [ Global Reference ] [ glue ] [ GNN ] [ GNNs ] [ goal-conditioned reinforcement learning ] [ goal-conditioned RL ] [ goal reaching ] [ gradient ] [ gradient alignment ] [ Gradient Alignment ] [ gradient boosted decision trees ] [ gradient boosting ] [ gradient decomposition ] [ Gradient Descent ] [ gradient descent-ascent ] [ gradient flow ] [ Gradient flow ] [ gradient flows ] [ gradient redundancy ] [ Gradient stability ] [ Grammatical error correction ] [ Granger causality ] [ Graph ] [ graph classification ] [ graph coarsening ] [ Graph Convolutional Network ] [ Graph Convolutional Neural Networks ] [ graph edit distance ] [ Graph Generation ] [ Graph Generative Model ] [ graph-level prediction ] [ graph networks ] [ Graph neural network ] [ Graph Neural Network ] [ Graph neural networks ] [ Graph Neural Networks ] [ Graph pooling ] [ graph representation learning ] [ Graph representation learning ] [ Graph Representation Learning ] [ graph shift operators ] [ graph-structured data ] [ graph structure learning ] [ Greedy Learning ] [ grid cells ] [ grounding ] [ group disparities ] [ group equivariance ] [ Group Equivariance ] [ Group Equivariant Convolution ] [ group equivariant self-attention ] [ group equivariant transformers ] [ group sparsity ] [ Group-supervised learning ] [ gumbel-softmax ] [ Hamiltonian systems ] [ hard-label attack ] [ hard negative mining ] [ hard negative sampling ] [ Hardware-Aware Neural Architecture Search ] [ Harmonic Analysis ] [ harmonic distortion analysis ] [ healthcare ] [ Healthcare ] [ heap allocation ] [ Hessian matrix ] [ Heterogeneity ] [ Heterogeneous ] [ heterogeneous data ] [ Heterogeneous data ] [ Heterophily ] [ heteroscedasticity ] [ heuristic search ] [ hidden-parameter mdp ] [ hierarchical contrastive learning ] [ Hierarchical Imitation Learning ] [ Hierarchical Multi-Agent Learning ] [ Hierarchical Networks ] [ Hierarchical Reinforcement Learning ] [ Hierarchy-Aware Classification ] [ high-dimensional asymptotics ] [ high-dimensional statistic ] [ high-resolution video generation ] [ hindsight relabeling ] [ histogram binning ] [ historical color image classification ] [ HMC ] [ homomorphic encryption ] [ Homophily ] [ Hopfield layer ] [ Hopfield networks ] [ Hopfield Networks ] [ human-AI collaboration ] [ human cognition ] [ human-computer interaction ] [ human preferences ] [ human psychophysics ] [ humans in the loop ] [ hybrid systems ] [ Hyperbolic ] [ hyperbolic deep learning ] [ Hyperbolic Geometry ] [ hypercomplex representation learning ] [ hypergradients ] [ Hypernetworks ] [ hyperparameter ] [ Hyperparameter Optimization ] [ Hyper-Parameter Optimization ] [ HYPERPARAMETER OPTIMIZATION ] [ Image Classification ] [ image completion ] [ Image compression ] [ Image Editing ] [ Image Generation ] [ Image manipulation ] [ Image Modeling ] [ ImageNet ] [ image reconstruction ] [ Image segmentation ] [ Image Synthesis ] [ image-to-action learning ] [ Image-to-Image Translation ] [ image translation ] [ image warping ] [ imbalanced learning ] [ Imitation Learning ] [ Impartial Learning ] [ implicit bias ] [ Implicit Bias ] [ Implicit Deep Learning ] [ implicit differentiation ] [ implicit functions ] [ implicit neural representations ] [ Implicit Neural Representations ] [ Implicit Representation ] [ Importance Weighting ] [ impossibility ] [ incoherence ] [ Incompatible Environments ] [ Incremental Tree Transformations ] [ independent component analysis ] [ indirection ] [ Individual mediation effects ] [ Inductive Bias ] [ inductive biases ] [ inductive representation learning ] [ infinitely wide neural network ] [ Infinite-Width Limit ] [ infinite-width networks ] [ influence functions ] [ Influence Functions ] [ Information bottleneck ] [ Information Bottleneck ] [ Information Geometry ] [ information-theoretical probing ] [ Information theory ] [ Information Theory ] [ Initialization ] [ input-adaptive multi-exit neural networks ] [ input convex neural networks ] [ input-convex neural networks ] [ InstaHide ] [ Instance adaptation ] [ instance-based label noise ] [ Instance learning ] [ Instance-wise Learning ] [ Instrumental Variable Regression ] [ integral probability metric ] [ intention ] [ interaction networks ] [ Interactions ] [ interactive fiction ] [ Internet of Things ] [ Interpolation Peak ] [ Interpretability ] [ interpretable latent representation ] [ Interpretable Machine Learning ] [ interpretable policy learning ] [ in-the-wild data ] [ Intrinsically Motivated Reinforcement Learning ] [ Intrinsic Motivation ] [ intrinsic motivations ] [ Intrinsic Reward ] [ Invariance and Equivariance ] [ invariance penalty ] [ invariances ] [ Invariant and equivariant deep networks ] [ Invariant Representations ] [ invariant risk minimization ] [ Invariant subspaces ] [ inverse graphics ] [ Inverse reinforcement learning ] [ Inverse Reinforcement Learning ] [ Inverted Index ] [ irl ] [ IRM ] [ irregularly spaced time series ] [ irregular-observed data modelling ] [ isometric ] [ Isotropy ] [ iterated learning ] [ iterative training ] [ JEM ] [ Johnson-Lindenstrauss Transforms ] [ kernel ] [ Kernel Learning ] [ kernel method ] [ kernel-ridge regression ] [ kernels ] [ keypoint localization ] [ Knowledge distillation ] [ Knowledge Distillation ] [ Knowledge factorization ] [ Knowledge Graph Reasoning ] [ knowledge uncertainty ] [ Kullback-Leibler divergence ] [ Kurdyka-Łojasiewicz geometry ] [ label noise robustness ] [ Label Representation ] [ Label shift ] [ label smoothing ] [ Langevin dynamics ] [ Langevin sampling ] [ Language Grounding ] [ Language Model ] [ Language modeling ] [ Language Modeling ] [ Language Modelling ] [ Language Model Pre-training ] [ language processing ] [ language-specific modeling ] [ Laplace kernel ] [ Large-scale ] [ Large-scale Deep Learning ] [ large scale learning ] [ Large-scale Machine Learning ] [ large-scale pre-trained language models ] [ large-scale training ] [ large vocabularies ] [ Last-iterate Convergence ] [ Latency-aware Neural Architecture Search ] [ Latent Simplex ] [ latent space of GANs ] [ Latent Variable Models ] [ lattices ] [ Layer order ] [ layerwise sparsity ] [ learnable ] [ learned algorithms ] [ Learned compression ] [ learned ISTA ] [ Learning ] [ learning action representations ] [ learning-based ] [ learning dynamics ] [ Learning Dynamics ] [ Learning in Games ] [ learning mechanisms ] [ Learning physical laws ] [ Learning Theory ] [ Learning to Hash ] [ learning to optimize ] [ Learning to Optimize ] [ learning to rank ] [ Learning to Rank ] [ learning to teach ] [ learning with noisy labels ] [ Learning with noisy labels ] [ library ] [ lifelong ] [ Lifelong learning ] [ Lifelong Learning ] [ lifted inference ] [ likelihood-based models ] [ likelihood-free inference ] [ limitations ] [ limited data ] [ linear bandits ] [ Linear Convergence ] [ linear estimator ] [ Linear Regression ] [ linear terms ] [ linformer ] [ Lipschitz constants ] [ Lipschitz constrained networks ] [ Local Explanations ] [ locality sensitive hashing ] [ Locally supervised training ] [ local Rademacher complexity ] [ log-concavity ] [ Logic ] [ Logic Rules ] [ logsignature ] [ Long-Tailed Recognition ] [ long-tail learning ] [ Long-term dependencies ] [ long-term prediction ] [ long-term stability ] [ loss correction ] [ Loss function search ] [ Loss Function Search ] [ lossless source compression ] [ Lottery Ticket ] [ Lottery Ticket Hypothesis ] [ lottery tickets ] [ low-dimensional structure ] [ lower bound ] [ lower bounds ] [ Low-latency ASR ] [ low precision training ] [ low rank ] [ low-rank approximation ] [ low-rank tensors ] [ L-smoothness ] [ LSTM ] [ Lyapunov Chaos ] [ Machine learning ] [ Machine Learning ] [ machine learning for code ] [ Machine Learning for Robotics ] [ Machine Learning (ML) for Programming Languages (PL)/Software Engineering (SE) ] [ machine learning systems ] [ Machine translation ] [ Machine Translation ] [ magnitude-based pruning ] [ Manifold clustering ] [ Manifolds ] [ Many-task ] [ mapping ] [ Markov chain Monte Carlo ] [ Markov Chain Monte Carlo ] [ Markov jump process ] [ Masked Reconstruction ] [ mathematical reasoning ] [ Matrix and Tensor Factorization ] [ matrix completion ] [ matrix decomposition ] [ Matrix Factorization ] [ max-margin ] [ MCMC ] [ MCMC sampling ] [ mean estimation ] [ mean-field dynamics ] [ mean separation ] [ Mechanism Design ] [ medical time series ] [ mel-filterbanks ] [ memorization ] [ Memorization ] [ Memory ] [ memory efficient ] [ memory efficient training ] [ Memory Mapping ] [ memory optimized training ] [ Memory-saving ] [ mesh ] [ Message Passing ] [ Message Passing GNNs ] [ meta-gradients ] [ Meta-learning ] [ Meta Learning ] [ Meta-Learning ] [ Metric Surrogate ] [ minimax optimal rate ] [ Minimax Optimization ] [ minimax risk ] [ Minmax ] [ min-max optimization ] [ mirror-prox ] [ Missing Data Inference ] [ Missing value imputation ] [ Missing Values ] [ misssing data ] [ mixed precision ] [ Mixed Precision ] [ Mixed-precision quantization ] [ mixture density nets ] [ mixture of experts ] [ mixup ] [ Mixup ] [ MixUp ] [ MLaaS ] [ MoCo ] [ Model Attribution ] [ model-based control ] [ model-based learning ] [ Model-based Reinforcement Learning ] [ Model-Based Reinforcement Learning ] [ model-based RL ] [ Model-based RL ] [ Model Biases ] [ Model compression ] [ model extraction ] [ model fairness ] [ Model Inversion ] [ model order reduction ] [ model ownership ] [ model predictive control ] [ model-predictive control ] [ Model Predictive Control ] [ Model privacy ] [ Models for code ] [ models of learning and generalization ] [ Model stealing ] [ Modern Hopfield Network ] [ modern Hopfield networks ] [ modified equation analysis ] [ modular architectures ] [ Modular network ] [ modular networks ] [ modular neural networks ] [ modular representations ] [ modulated convolution ] [ Molecular conformation generation ] [ molecular design ] [ Molecular Dynamics ] [ molecular graph generation ] [ Molecular Representation ] [ Molecule Design ] [ Momentum ] [ momentum methods ] [ momentum optimizer ] [ monotonicity ] [ Monte Carlo ] [ Monte-Carlo tree search ] [ Monte Carlo Tree Search ] [ morphology ] [ Morse theory ] [ mpc ] [ Multi-agent ] [ Multi-agent games ] [ Multiagent Learning ] [ multi-agent platform ] [ Multi-Agent Policy Gradients ] [ Multi-agent reinforcement learning ] [ Multi-agent Reinforcement Learning ] [ Multi-Agent Reinforcement Learning ] [ Multi-Agent Transfer Learning ] [ multiclass classification ] [ multi-dimensional discrete action spaces ] [ Multi-domain ] [ multi-domain disentanglement ] [ multi-head attention ] [ Multi-Hop ] [ multi-hop question answering ] [ Multi-hop Reasoning ] [ Multilingual Modeling ] [ multilingual representations ] [ multilingual transformer ] [ multilingual translation ] [ Multimodal ] [ Multi-Modal ] [ Multimodal Attention ] [ multi-modal learning ] [ Multimodal Learning ] [ Multi-Modal Learning ] [ Multimodal Spaces ] [ Multi-objective optimization ] [ multi-player ] [ Multiplicative Weights Update ] [ Multi-scale Representation ] [ multitask ] [ Multi-task ] [ Multi-task Learning ] [ Multi Task Learning ] [ Multi-Task Learning ] [ multi-task learning theory ] [ Multitask Reinforcement Learning ] [ Multi-view Learning ] [ Multi-View Learning ] [ Multi-view Representation Learning ] [ Mutual Information ] [ MuZero ] [ Named Entity Recognition ] [ NAS ] [ nash ] [ natural gradient descent ] [ Natural Language Processing ] [ natural scene statistics ] [ natural sparsity ] [ Negative Sampling ] [ negotiation ] [ nested optimization ] [ network architecture ] [ Network Architecture ] [ Network Inductive Bias ] [ network motif ] [ Network pruning ] [ Network Pruning ] [ networks ] [ network trainability ] [ network width ] [ Neural Architecture Search ] [ Neural Attention Distillation ] [ neural collapse ] [ Neural data compression ] [ Neural IR ] [ neural kernels ] [ neural link prediction ] [ Neural Model Explanation ] [ neural module network ] [ Neural Network ] [ Neural Network Bounding ] [ neural network calibration ] [ Neural Network Gaussian Process ] [ neural network robustness ] [ Neural networks ] [ Neural Networks ] [ neural network training ] [ Neural Network Verification ] [ neural ode ] [ Neural ODE ] [ Neural ODEs ] [ Neural operators ] [ Neural Physics Engines ] [ Neural Processes ] [ neural reconstruction ] [ neural sound synthesis ] [ neural spike train ] [ neural symbolic reasoning ] [ neural tangent kernel ] [ Neural tangent kernel ] [ Neural Tangent Kernel ] [ neural tangent kernels ] [ Neural text decoding ] [ neurobiology ] [ Neuroevolution ] [ Neuro symbolic ] [ Neuro-Symbolic Learning ] [ neuro-symbolic models ] [ NLI ] [ NLP ] [ Node Embeddings ] [ noise contrastive estimation ] [ Noise-contrastive learning ] [ Noise model ] [ noise robust learning ] [ Noisy Demonstrations ] [ noisy label ] [ Noisy Label ] [ Noisy Labels ] [ Non-asymptotic Confidence Intervals ] [ non-autoregressive generation ] [ nonconvex ] [ non-convex learning ] [ Non-Convex Optimization ] [ Non-IID ] [ nonlinear control theory ] [ nonlinear dynamical systems ] [ nonlinear Hawkes process ] [ nonlinear walk ] [ Non-Local Modules ] [ non-minimax optimization ] [ nonnegative PCA ] [ nonseparable Hailtonian system ] [ non-smooth models ] [ non-stationary stochastic processes ] [ no-regret learning ] [ normalized maximum likelihood ] [ normalize layer ] [ normalizers ] [ Normalizing Flow ] [ normalizing flows ] [ Normalizing flows ] [ Normalizing Flows ] [ normative models ] [ novelty-detection ] [ ntk ] [ number of linear regions ] [ numerical errors ] [ numerical linear algebra ] [ object-centric representations ] [ Object detection ] [ Object Detection ] [ object-keypoint representations ] [ ObjectNet ] [ Object Permanence ] [ Observational Imitation ] [ ODE ] [ offline ] [ offline/batch reinforcement learning ] [ off-line reinforcement learning ] [ offline reinforcement learning ] [ Offline Reinforcement Learning ] [ offline RL ] [ off-policy evaluation ] [ Off Policy Evaluation ] [ Off-policy policy evaluation ] [ Off-Policy Reinforcement Learning ] [ off-policy RL ] [ one-class-classification ] [ one-to-many mapping ] [ Open-domain ] [ open domain complex question answering ] [ open source ] [ Optimal Control Theory ] [ optimal convergence ] [ optimal power flow ] [ Optimal Transport ] [ optimal transport maps ] [ Optimisation for Deep Learning ] [ optimism ] [ Optimistic Gradient Descent Ascent ] [ Optimistic Mirror Decent ] [ Optimistic Multiplicative Weights Update ] [ Optimization ] [ order learning ] [ ordinary differential equation ] [ orthogonal ] [ orthogonal layers ] [ orthogonal machine learning ] [ Orthogonal Polynomials ] [ Oscillators ] [ outlier detection ] [ outlier-detection ] [ Outlier detection ] [ out-of-distribution ] [ Out-of-distribution detection in deep learning ] [ out-of-distribution generalization ] [ Out-of-domain ] [ over-fitting ] [ Overfitting ] [ overparameterisation ] [ over-parameterization ] [ Over-parameterization ] [ Overparameterization ] [ overparameterized neural networks ] [ Over-smoothing ] [ Oversmoothing ] [ over-squashing ] [ PAC Bayes ] [ padding ] [ parallel Monte Carlo Tree Search (MCTS) ] [ parallel tempering ] [ Parameter-Reduced MLR ] [ part-based ] [ Partial Amortization ] [ Partial differential equation ] [ partial differential equations ] [ partially observed environments ] [ particle inference ] [ pca ] [ pde ] [ pdes ] [ PDEs ] [ performer ] [ persistence diagrams ] [ personalized learning ] [ perturbation sets ] [ Peter-Weyl Theorem ] [ phase retrieval ] [ Physical parameter estimation ] [ physical reasoning ] [ physical scene understanding ] [ Physical Simulation ] [ physical symbol grounding ] [ physics ] [ physics-guided deep learning ] [ piecewise linear function ] [ pipeline toolkit ] [ plan-based reward shaping ] [ Planning ] [ Poincaré Ball Model ] [ Point cloud ] [ Point clouds ] [ point processes ] [ pointwise mutual information ] [ poisoning ] [ poisoning attack ] [ poisson matrix factorization ] [ policy learning ] [ Policy Optimization ] [ polynomial time ] [ Pose Estimation ] [ Position Embedding ] [ Position Encoding ] [ post-hoc calibration ] [ Post-Hoc Correction ] [ Post Training Quantization ] [ power grid management ] [ Predictive Modeling ] [ predictive uncertainty ] [ Predictive Uncertainty Estimation ] [ pretrained language model ] [ pretrained language model. ] [ pre-trained language model fine-tuning ] [ Pretrained Language Models ] [ Pretrained Text Encoders ] [ pre-training ] [ Pre-training ] [ Primitive Discovery ] [ principal components analysis ] [ Privacy ] [ privacy leakage from gradients ] [ privacy preserving machine learning ] [ Privacy-utility tradeoff ] [ probabelistic models ] [ probabilistic generative models ] [ probabilistic inference ] [ probabilistic matrix factorization ] [ Probabilistic Methods ] [ probabilistic multivariate forecasting ] [ probabilistic numerics ] [ probabilistic programs ] [ probably approximated correct guarantee ] [ Probe ] [ probing ] [ procedural generation ] [ procedural knowledge ] [ product of experts ] [ Product Quantization ] [ Program obfuscation ] [ Program Synthesis ] [ Proper Scoring Rules ] [ protein ] [ prototype propagation ] [ Provable Robustness ] [ provable sample efficiency ] [ proximal gradient descent-ascent ] [ proxy ] [ Pruning ] [ Pruning at initialization ] [ pseudo-labeling ] [ Pseudo-Labeling ] [ QA ] [ Q-learning ] [ Quantization ] [ quantum machine learning ] [ quantum mechanics ] [ Quantum Mechanics ] [ Question Answering ] [ random ] [ Random Feature ] [ Random Features ] [ Randomized Algorithms ] [ Random Matrix Theory ] [ Random Weights Neural Networks ] [ rank-collapse ] [ rank-constrained convex optimization ] [ rao ] [ rao-blackwell ] [ Rate-distortion optimization ] [ raven's progressive matrices ] [ real time recurrent learning ] [ real-world ] [ Real-world image denoising ] [ reasoning paths ] [ recommendation systems ] [ recommender system ] [ Recommender Systems ] [ recovery likelihood ] [ rectified linear unit ] [ Recurrent Generative Model ] [ Recurrent Neural Network ] [ Recurrent neural networks ] [ Recurrent Neural Networks ] [ recursive dense retrieval ] [ reformer ] [ regime agnostic methods ] [ Regression ] [ Regression without correspondence ] [ regret analysis ] [ regret minimization ] [ Regularization ] [ Regularization by denoising ] [ regularized markov decision processes ] [ Reinforcement ] [ Reinforcement learning ] [ Reinforcement Learning ] [ Reinforcement Learnings ] [ Reinforcement learning theory ] [ relabelling ] [ Relational regularized autoencoder ] [ Relation Extraction ] [ relaxed regularization ] [ relu network ] [ ReLU networks ] [ Rematerialization ] [ Render-and-Compare ] [ Reparameterization ] [ repetitions ] [ replica exchange ] [ representational learning ] [ representation analysis ] [ Representation learning ] [ Representation Learning ] [ representation learning for computer vision ] [ representation learning for robotics ] [ representation of dynamical systems ] [ Representation Theory ] [ reproducibility ] [ reproducible research ] [ Reproducing kernel Hilbert space ] [ resampling ] [ reset-free ] [ residual ] [ ResNets ] [ resource constrained ] [ Restricted Boltzmann Machines ] [ retraining ] [ Retrieval ] [ reverse accuracy ] [ reverse engineering ] [ reward learning ] [ reward randomization ] [ reward shaping ] [ reweighting ] [ Rich observation ] [ rich observations ] [ risk-averse ] [ Risk bound ] [ Risk Estimation ] [ risk sensitive ] [ rl ] [ RMSprop ] [ RNA-protein interaction prediction ] [ RNA structure ] [ RNA structure embedding ] [ RNN ] [ RNNs ] [ robotic manipulation ] [ robust ] [ robust control ] [ robust deep learning ] [ Robust Deep Learning ] [ robust learning ] [ Robust Learning ] [ Robust Machine Learning ] [ Robustness ] [ Robustness certificates ] [ Robust Overfitting ] [ ROC ] [ Role-Based Learning ] [ rooted graphs ] [ Rotation invariance ] [ rtrl ] [ Runtime Systems ] [ Saddle-point Optimization ] [ safe ] [ Safe exploration ] [ safe planning ] [ Saliency ] [ Saliency Guided Data Augmentation ] [ saliency maps ] [ SaliencyMix ] [ sample complexity separation ] [ Sample Efficiency ] [ sample information ] [ sample reweighting ] [ Sampling ] [ sampling algorithms ] [ Scalability ] [ Scale ] [ scale-invariant weights ] [ Scale of initialization ] [ scene decomposition ] [ scene generation ] [ Scene Understanding ] [ Science ] [ science of deep learning ] [ score-based generative models ] [ score matching ] [ score-matching ] [ SDE ] [ Second-order analysis ] [ second-order approximation ] [ second-order optimization ] [ Security ] [ segmented models ] [ selective classification ] [ Self-Imitation ] [ self supervised learning ] [ Self-supervised learning ] [ Self-supervised Learning ] [ Self Supervised Learning ] [ Self-Supervised Learning ] [ self-supervision ] [ self-training ] [ self-training theory ] [ semantic anomaly detection ] [ semantic directions in latent space ] [ semantic graphs ] [ Semantic Image Synthesis ] [ semantic parsing ] [ semantic role labeling ] [ semantic-segmentation ] [ Semantic Segmentation ] [ Semantic Textual Similarity ] [ semi-infinite duality ] [ semi-nonnegative matrix factorization ] [ semiparametric inference ] [ semi-supervised ] [ Semi-supervised Learning ] [ Semi-Supervised Learning ] [ semi-supervised learning theory ] [ Sentence Embeddings ] [ Sentence Representations ] [ Sentiment ] [ separation of variables ] [ Sequence Data ] [ Sequence Modeling ] [ sequence models ] [ Sequence-to-sequence learning ] [ sequence-to-sequence models ] [ sequential data ] [ Sequential probability ratio test ] [ Sequential Representation Learning ] [ set prediction ] [ set transformer ] [ SGD ] [ SGD noise ] [ sgld ] [ Shape ] [ shape bias ] [ Shape Bias ] [ Shape Encoding ] [ shapes ] [ Shapley values ] [ Sharpness Minimization ] [ side channel analysis ] [ Sigma Delta Quantization ] [ sign agnostic learning ] [ signal propagation ] [ signature ] [ sim2real ] [ sim2real transfer ] [ simple ] [ Singularity analysis ] [ singular value decomposition ] [ Sinkhorn algorithm ] [ skeleton-based action recognition ] [ sketch-based modeling ] [ sketches ] [ Skill Discovery ] [ SLAM ] [ sliced fused Gromov Wasserstein ] [ Sliced Wasserstein ] [ Slowdown attacks ] [ slowness ] [ Smooth games ] [ smoothing ] [ SMT Solvers ] [ social perception ] [ Soft Body ] [ soft labels ] [ software ] [ sound classification ] [ sound spatialization ] [ Source Code ] [ sparse Bayesian learning ] [ Sparse Embedding ] [ sparse embeddings ] [ sparse reconstruction ] [ sparse representation ] [ sparse representations ] [ sparse stochastic gates ] [ Sparsity ] [ Sparsity Learning ] [ spatial awareness ] [ spatial bias ] [ spatial uncertainty ] [ spatio-temporal forecasting ] [ spatio-temporal graph ] [ spatio-temporal modeling ] [ spatio-temporal modelling ] [ spatiotemporal prediction ] [ Spatiotemporal Understanding ] [ Spectral Analysis ] [ Spectral Distribution ] [ Spectral Graph Filter ] [ spectral regularization ] [ speech generation ] [ speech-impaired ] [ speech processing ] [ speech recognition. ] [ Speech Recognition ] [ spherical distributions ] [ spiking neural network ] [ spurious correlations ] [ square loss vs cross-entropy ] [ stability theory ] [ State abstraction ] [ state abstractions ] [ state-space models ] [ statistical learning theory ] [ Statistical Learning Theory ] [ statistical physics ] [ Statistical Physics ] [ statistical physics methods ] [ Steerable Kernel ] [ Stepsize optimization ] [ stochastic asymptotics ] [ stochastic control ] [ (stochastic) gradient descent ] [ Stochastic Gradient Descent ] [ stochastic gradient Langevin dynamics ] [ stochastic process ] [ Stochastic Processes ] [ stochastic subgradient method ] [ Storage Capacity ] [ straight-through ] [ straightthrough ] [ strategic behavior ] [ Streaming ASR ] [ structural biology ] [ structural credit assignment ] [ structural inductive bias ] [ Structured Pruning ] [ Structure learning ] [ structure prediction ] [ structures prediction ] [ Style Mixing ] [ Style Transfer ] [ subgraph reasoning. ] [ sublinear ] [ submodular optimization ] [ Subspace clustering ] [ Summarization ] [ summary statistics ] [ superpixel ] [ supervised contrastive learning ] [ Supervised Deep Networks ] [ Supervised Learning ] [ support estimation ] [ surprisal ] [ surrogate models ] [ svd ] [ SVD ] [ Symbolic Methods ] [ symbolic regression ] [ symbolic representations ] [ Symmetry ] [ symplectic networks ] [ Syntax ] [ Synthetic benchmark dataset ] [ synthetic-to-real generalization ] [ Systematic generalisation ] [ Systematicity ] [ System identification ] [ Tabular ] [ tabular data ] [ Tabular Data ] [ targeted attack ] [ Task Embeddings ] [ task generation ] [ task-oriented dialogue ] [ Task-oriented Dialogue System ] [ task reduction ] [ Task Segmentation ] [ Teacher-Student Learning ] [ teacher-student model ] [ temporal context ] [ Temporal knowledge graph ] [ temporal networks ] [ tensor product ] [ Text-based Games ] [ Text Representation ] [ Text Retrieval ] [ Text to speech ] [ Text to speech synthesis ] [ text-to-sql ] [ Texture ] [ Texture Bias ] [ Textworld ] [ Theorem proving ] [ theoretical issues in deep learning ] [ theoretical limits ] [ theoretical study ] [ Theory ] [ Theory of deep learning ] [ theory of mind ] [ Third-Person Imitation ] [ Thompson sampling ] [ time-frequency representations ] [ timescale ] [ timescales ] [ Time Series ] [ Time series forecasting ] [ time series prediction ] [ topic modelling ] [ Topology ] [ training dynamics ] [ Training Method ] [ trajectory ] [ trajectory optimization ] [ trajectory prediction ] [ Transferability ] [ Transfer learning ] [ Transfer Learning ] [ transformation invariance ] [ Transformer ] [ Transformers ] [ traveling salesperson problem ] [ Tree-structured Data ] [ trembl ] [ tropical function ] [ trust region ] [ two-layer neural network ] [ Uncertainty ] [ uncertainty calibration ] [ Uncertainty estimates ] [ Uncertainty estimation ] [ Uncertainty Machine Learning ] [ understanding ] [ understanding CNNs ] [ Understanding Data Augmentation ] [ understanding decision-making ] [ understanding deep learning ] [ Understanding Deep Learning ] [ understanding neural networks ] [ U-Net ] [ unidirectional ] [ uniprot ] [ universal approximation ] [ Universal approximation ] [ Universality ] [ universal representation learning ] [ universal sound separation ] [ unlabeled data ] [ Unlabeled Entity Problem ] [ Unlearnable Examples ] [ unrolled algorithms ] [ Unsupervised denoising ] [ Unsupervised Domain Translation ] [ unsupervised image denoising ] [ Unsupervised learning ] [ Unsupervised Learning ] [ unsupervised learning theory ] [ unsupervised loss ] [ Unsupervised Meta-learning ] [ unsupervised object discovery ] [ Unsupervised reinforcement learning ] [ unsupervised skill discovery ] [ unsupervised stabilization ] [ Upper Confidence bound applied to Trees (UCT) ] [ Usable Information ] [ VAE ] [ Value factorization ] [ value learning ] [ vanishing gradient problem ] [ variable binding ] [ variable convergence ] [ Variable Embeddings ] [ Variance Networks ] [ Variational Auto-encoder ] [ Variational autoencoders ] [ Variational Autoencoders ] [ Variational inference ] [ variational information bottleneck ] [ Verification ] [ video analysis ] [ Video Classification ] [ Video Compression ] [ video generation ] [ video-grounded dialogues ] [ Video prediction ] [ Video Reasoning ] [ video recognition ] [ Video Recognition ] [ video representation learning ] [ video synthesis ] [ video-text learning ] [ views ] [ virtual environment ] [ vision-and-language-navigation ] [ visual counting ] [ visualization ] [ visual perception ] [ Visual Reasoning ] [ visual reinforcement learning ] [ visual representation learning ] [ visual saliency ] [ vocoder ] [ voice conversion ] [ Volume Analysis ] [ VQA ] [ vulnerability of RL ] [ wanet ] [ warping functions ] [ Wasserstein ] [ wasserstein-2 barycenters ] [ wasserstein-2 distance ] [ Wasserstein distance ] [ waveform generation ] [ weakly-supervised learning ] [ weakly supervised representation learning ] [ Weak supervision ] [ Weak-supervision ] [ webly-supervised learning ] [ weight attack ] [ weight balance ] [ Weight quantization ] [ weight-sharing ] [ wide local minima ] [ Wigner-Eckart Theorem ] [ winning tickets ] [ wireframe model ] [ word-learning ] [ world models ] [ World Models ] [ worst-case generalisation ] [ xai ] [ XAI ] [ zero-order optimization ] [ zero-shot learning ] [ Zero-shot learning ] [ Zero-shot Learning ] [ Zero-shot synthesis ]

242 Results

Poster
Mon 1:00 MELR: Meta-Learning via Modeling Episode-Level Relationships for Few-Shot Learning
Nanyi Fei, Zhiwu Lu, Tao Xiang, Songfang Huang
Poster
Mon 1:00 Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering
Calypso Herrera, Florian Krach, Josef Teichmann
Poster
Mon 1:00 ResNet After All: Neural ODEs and Their Numerical Solution
Katharina Ott, Prateek Katiyar, Philipp Hennig, Michael Tiemann
Poster
Mon 1:00 A Good Image Generator Is What You Need for High-Resolution Video Synthesis
Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris Metaxas, Sergey Tulyakov
Poster
Mon 1:00 Set Prediction without Imposing Structure as Conditional Density Estimation
David W Zhang, Gertjan J Burghouts, Cees G Snoek
Poster
Mon 1:00 FairFil: Contrastive Neural Debiasing Method for Pretrained Text Encoders
Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, Lawrence Carin
Poster
Mon 1:00 Wasserstein Embedding for Graph Learning
Soheil Kolouri, Navid Naderializadeh, Gustavo K Rohde, Heiko Hoffmann
Poster
Mon 1:00 Trusted Multi-View Classification
Zongbo Han, Changqing Zhang, Huazhu FU, Joey T Zhou
Poster
Mon 1:00 Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets
Hayeon Lee, Eunyoung Hyung, Sung Ju Hwang
Oral
Mon 4:15 A Distributional Approach to Controlled Text Generation
Muhammad Khalifa, Hady Elsahar, Marc Dymetman
Oral
Mon 5:15 Do 2D GANs Know 3D Shape? Unsupervised 3D Shape Reconstruction from 2D Image GANs
Xingang Pan, Bo DAI, Ziwei Liu, Chen Change Loy, Ping Luo
Poster
Mon 9:00 LambdaNetworks: Modeling long-range Interactions without Attention
Irwan Bello
Poster
Mon 9:00 Into the Wild with AudioScope: Unsupervised Audio-Visual Separation of On-Screen Sounds
Efthymios Tzinis, Scott Wisdom, Aren Jansen, Shawn Hershey, Tal Remez, Dan Ellis, John Hershey
Poster
Mon 9:00 Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning
Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-Yee K Wong, Joshua B Tenenbaum, Chuang Gan
Poster
Mon 9:00 Reset-Free Lifelong Learning with Skill-Space Planning
Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch
Poster
Mon 9:00 MultiModalQA: complex question answering over text, tables and images
Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel Ilharco, Hannaneh Hajishirzi, Jonathan Berant
Poster
Mon 9:00 Shapley explainability on the data manifold
Christopher Frye, Damien De Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, Ilya Feige
Poster
Mon 9:00 The Traveling Observer Model: Multi-task Learning Through Spatial Variable Embeddings
Elliot Meyerson, Risto Miikkulainen
Poster
Mon 9:00 Graph Convolution with Low-rank Learnable Local Filters
Xiuyuan Cheng, Zichen Miao, Qiang Qiu
Poster
Mon 9:00 Structured Prediction as Translation between Augmented Natural Languages
Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille, RISHITA ANUBHAI, Cicero Nogueira dos Santos, Bing Xiang, Stefano Soatto
Poster
Mon 9:00 InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan, Ruoxi Jia, Bo Li, Jingjing Liu
Mon 9:00 Philosophy and AGI (#1)
Poster
Mon 9:00 Multi-Level Local SGD: Distributed SGD for Heterogeneous Hierarchical Networks
Timothy Castiglia, Anirban Das, Stacy Patterson
Poster
Mon 9:00 What Should Not Be Contrastive in Contrastive Learning
Tete Xiao, Xiaolong Wang, Alyosha Efros, trevor darrell
Poster
Mon 9:00 Multi-Time Attention Networks for Irregularly Sampled Time Series
Satya Narayan Shukla, Benjamin M Marlin
Spotlight
Mon 11:45 Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li, Misha Khodak, Nina Balcan, Ameet Talwalkar
Poster
Mon 17:00 Parrot: Data-Driven Behavioral Priors for Reinforcement Learning
Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, Sergey Levine
Poster
Mon 17:00 PseudoSeg: Designing Pseudo Labels for Semantic Segmentation
Yuliang Zou, Zizhao Zhang, Han Zhang, Chun-Liang Li, Xiao Bian, Jia-Bin Huang, Tomas Pfister
Poster
Mon 17:00 Zero-shot Synthesis with Group-Supervised Learning
Yunhao Ge, Sami Abu-El-Haija, Gan Xin, Laurent Itti
Poster
Mon 17:00 VA-RED$^2$: Video Adaptive Redundancy Reduction
Bowen Pan, Rameswar Panda, Camilo L Fosco, Chung-Ching Lin, Alex J Andonian, Yue Meng, Kate Saenko, Aude Oliva, Rogerio Feris
Poster
Mon 17:00 The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran, Behnam Neyshabur, Hanie Sedghi
Poster
Mon 17:00 MONGOOSE: A Learnable LSH Framework for Efficient Neural Network Training
Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan L Li, Tri Dao, Zhao Song, Anshumali Shrivastava, Christopher Re
Poster
Mon 17:00 MixKD: Towards Efficient Distillation of Large-scale Language Models
Kevin Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, Lawrence Carin
Poster
Mon 17:00 Spatio-Temporal Graph Scattering Transform
Chao Pan, Siheng Chen, Antonio Ortega
Poster
Mon 17:00 Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
Huan Zhang, Hongge Chen, Duane S Boning, Cho-Jui Hsieh
Poster
Mon 17:00 On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Lily Weng, Chuang Gan, Meng Wang
Poster
Mon 17:00 Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Karan Goel, Albert Gu, Yixuan Li, Christopher Re
Poster
Mon 17:00 Regularized Inverse Reinforcement Learning
Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, Joelle Pineau
Poster
Mon 17:00 Meta-Learning with Neural Tangent Kernels
Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, Jinhui Xu
Poster
Mon 17:00 Partitioned Learned Bloom Filters
Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, Tim Kraska
Poster
Mon 17:00 Tilted Empirical Risk Minimization
Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith
Poster
Mon 17:00 Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song, Jascha Sohl-Dickstein, Durk Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole
Poster
Mon 17:00 Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks
Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, Daniel Ma
Oral
Mon 19:30 Parrot: Data-Driven Behavioral Priors for Reinforcement Learning
Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, Sergey Levine
Spotlight
Mon 19:45 Structured Prediction as Translation between Augmented Natural Languages
Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille, RISHITA ANUBHAI, Cicero Nogueira dos Santos, Bing Xiang, Stefano Soatto
Spotlight
Mon 20:38 Information Laundering for Model Privacy
Xinran Wang, Yu Xiang, Jun Gao, Jie Ding
Spotlight
Mon 21:36 Graph Convolution with Low-rank Learnable Local Filters
Xiuyuan Cheng, Zichen Miao, Qiang Qiu
Spotlight
Mon 21:46 The Traveling Observer Model: Multi-task Learning Through Spatial Variable Embeddings
Elliot Meyerson, Risto Miikkulainen
Invited Talk
Tue 0:00 Geometric Deep Learning: the Erlangen Programme of ML
Michael Bronstein
Poster
Tue 1:00 Complex Query Answering with Neural Link Predictors
Erik Arakelyan, Daniel Daza, Pasquale Minervini, Michael Cochez
Poster
Tue 1:00 A Distributional Approach to Controlled Text Generation
Muhammad Khalifa, Hady Elsahar, Marc Dymetman
Poster
Tue 1:00 Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize
Nils Wandel, Michael Weinmann, Reinhard Klein
Poster
Tue 1:00 Prototypical Contrastive Learning of Unsupervised Representations
Junnan Li, Pan Zhou, Caiming Xiong, Steven Hoi
Poster
Tue 1:00 Sample-Efficient Automated Deep Reinforcement Learning
Jörg Franke, Gregor Koehler, André Biedenkapp, Frank Hutter
Poster
Tue 1:00 FedMix: Approximation of Mixup under Mean Augmented Federated Learning
Tehrim Yoon, Sumin Shin, Sung Ju Hwang, Eunho Yang
Poster
Tue 1:00 Calibration tests beyond classification
David Widmann, Fredrik Lindsten, Dave Zachariah
Poster
Tue 1:00 Auxiliary Learning by Implicit Differentiation
Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, Ethan Fetaya
Poster
Tue 1:00 Do 2D GANs Know 3D Shape? Unsupervised 3D Shape Reconstruction from 2D Image GANs
Xingang Pan, Bo DAI, Ziwei Liu, Chen Change Loy, Ping Luo
Poster
Tue 1:00 MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering
Tsung Wei Tsai, Chongxuan Li, Jun Zhu
Poster
Tue 1:00 Model-based micro-data reinforcement learning: what are the crucial model properties and which model to choose?
Balázs Kégl, Gabriel Hurtado, Albert Thomas
Poster
Tue 1:00 Prediction and generalisation over directed actions by grid cells
Changmin Yu, Timothy Behrens, Neil Burgess
Spotlight
Tue 3:35 Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian, marc lelarge
Spotlight
Tue 5:18 Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize
Nils Wandel, Michael Weinmann, Reinhard Klein
Poster
Tue 9:00 Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández Lobato
Poster
Tue 9:00 DINO: A Conditional Energy-Based GAN for Domain Translation
Konstantinos Vougioukas, Stavros Petridis, Maja Pantic
Poster
Tue 9:00 Vulnerability-Aware Poisoning Mechanism for Online RL with Unknown Dynamics
Yanchao Sun, Da Huo, Furong Huang
Poster
Tue 9:00 Iterative Empirical Game Solving via Single Policy Best Response
Max Smith, Thomas Anthony, Michael Wellman
Poster
Tue 9:00 Teaching with Commentaries
Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David Duvenaud, Geoffrey Hinton
Poster
Tue 9:00 Learning Robust State Abstractions for Hidden-Parameter Block MDPs
Amy Zhang, Shagun Sodhani, Khimya Khetarpal, Joelle Pineau
Poster
Tue 9:00 Unsupervised Representation Learning for Time Series with Temporal Neighborhood Coding
Sana Tonekaboni, Danny Eytan, Anna Goldenberg
Poster
Tue 9:00 Representation Learning via Invariant Causal Mechanisms
Jovana Mitrovic, Brian McWilliams, Jacob C Walker, Lars Buesing, Charles Blundell
Poster
Tue 9:00 Physics-aware, probabilistic model order reduction with guaranteed stability
Sebastian Kaltenbach, PS Koutsourelakis
Poster
Tue 9:00 Decoupling Global and Local Representations via Invertible Generative Flows
Xuezhe Ma, Xiang Kong, Shanghang Zhang, Eduard H Hovy
Poster
Tue 9:00 Learning Parametrised Graph Shift Operators
George Dasoulas, Johannes Lutzeyer, Michalis Vazirgiannis
Poster
Tue 9:00 Learning Value Functions in Deep Policy Gradients using Residual Variance
Yannis Flet-Berliac, reda ouhamma, odalric-ambrym maillard, philippe preux
Poster
Tue 9:00 Are wider nets better given the same number of parameters?
Anna Golubeva, Guy Gur-Ari, Behnam Neyshabur
Poster
Tue 9:00 SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag, Mung Chiang, Prateek Mittal
Poster
Tue 9:00 UMEC: Unified model and embedding compression for efficient recommendation systems
Jiayi Shen, Haotao Wang, Shupeng Gui, Jianchao Tan, Zhangyang Wang, Ji Liu
Poster
Tue 9:00 Uncertainty Estimation in Autoregressive Structured Prediction
Andrey Malinin, Mark Gales
Oral
Tue 11:15 Learning Generalizable Visual Representations via Interactive Gameplay
Luca Weihs, Ani Kembhavi, Kiana Ehsani, Sarah M Pratt, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin Schwenk, Roozbeh Mottaghi, Ali Farhadi
Spotlight
Tue 11:30 How Does Mixup Help With Robustness and Generalization?
Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, James Zou
Oral
Tue 12:00 Randomized Automatic Differentiation
Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P Adams
Spotlight
Tue 12:40 Implicit Convex Regularizers of CNN Architectures: Convex Optimization of Two- and Three-Layer Networks in Polynomial Time
Tolga Ergen, Mert Pilanci
Spotlight
Tue 13:38 Long-tail learning via logit adjustment
Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, Sanjiv Kumar
Poster
Tue 17:00 A Discriminative Gaussian Mixture Model with Sparsity
Hideaki Hayashi, Seiichi Uchida
Poster
Tue 17:00 Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel L Yamins, Hidenori Tanaka
Poster
Tue 17:00 Information Laundering for Model Privacy
Xinran Wang, Yu Xiang, Jun Gao, Jie Ding
Poster
Tue 17:00 DOP: Off-Policy Multi-Agent Decomposed Policy Gradients
Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, Chongjie Zhang
Poster
Tue 17:00 A Hypergradient Approach to Robust Regression without Correspondence
Yujia Xie, Yixiu Mao, Simiao Zuo, Hongteng Xu, Xiaojing Ye, Tuo Zhao, Hongyuan Zha
Poster
Tue 17:00 Drop-Bottleneck: Learning Discrete Compressed Representation for Noise-Robust Exploration
Jaekyeom Kim, Minjung Kim, Dongyeon Woo, Gunhee Kim
Poster
Tue 17:00 Learning Safe Multi-agent Control with Decentralized Neural Barrier Certificates
Zengyi Qin, Kaiqing Zhang, chenyx Chen, Jingkai Chen, Chuchu Fan
Poster
Tue 17:00 The Importance of Pessimism in Fixed-Dataset Policy Optimization
Jacob Buckman, Carles Gelada, Marc G Bellemare
Poster
Tue 17:00 Unsupervised Discovery of 3D Physical Objects
Yilun Du, Kevin A Smith, Tomer Ullman, Joshua B Tenenbaum, Jiajun Wu
Poster
Tue 17:00 Deep Equals Shallow for ReLU Networks in Kernel Regimes
Alberto Bietti, Francis Bach
Poster
Tue 17:00 Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees?
Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
Poster
Tue 17:00 CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for Natural Language Understanding
Yanru Qu, Dinghan Shen, Yelong Shen, Sandra Sajeev, Weizhu Chen, Jiawei Han
Poster
Tue 17:00 Attentional Constellation Nets for Few-Shot Learning
Weijian Xu, Yifan Xu, Huaijin Wang, Zhuowen Tu
Poster
Tue 17:00 Memory Optimization for Deep Networks
Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, Philipp Krähenbühl
Poster
Tue 17:00 Implicit Convex Regularizers of CNN Architectures: Convex Optimization of Two- and Three-Layer Networks in Polynomial Time
Tolga Ergen, Mert Pilanci
Poster
Tue 17:00 Multi-resolution modeling of a discrete stochastic process identifies causes of cancer
Adam Yaari, Maxwell Sherman, Oliver C Priebe, Po-Ru Loh, Boris Katz, Andrei Barbu, Bonnie Berger
Oral
Tue 19:00 Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
Brenden Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Santiago, Soo Kim, Joanne Kim
Oral
Tue 19:55 Global Convergence of Three-layer Neural Networks in the Mean Field Regime
Huy Tuan Pham, Phan-Minh Nguyen
Spotlight
Tue 20:20 Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun, Jiaming Liu, Yiran Sun, Brendt Wohlberg, Ulugbek Kamilov
Spotlight
Tue 20:40 Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees?
Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
Oral
Tue 21:18 MONGOOSE: A Learnable LSH Framework for Efficient Neural Network Training
Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan L Li, Tri Dao, Zhao Song, Anshumali Shrivastava, Christopher Re
Spotlight
Tue 21:43 Memory Optimization for Deep Networks
Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, Philipp Krähenbühl
Spotlight
Tue 21:53 Neural Topic Model via Optimal Transport
He Zhao, Dinh Phung, Viet Huynh, Trung Le, Wray Buntine
Poster
Wed 1:00 Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian, marc lelarge
Poster
Wed 1:00 BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction
Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, fengwei yu, Wei Wang, Shi Gu
Poster
Wed 1:00 Disentangled Recurrent Wasserstein Autoencoder
Jun Han, Martin Min, Ligong Han, Li Erran Li, Xuan Zhang
Poster
Wed 1:00 Acting in Delayed Environments with Non-Stationary Markov Policies
Esther Derman, Gal Dalal, Shie Mannor
Poster
Wed 1:00 No Cost Likelihood Manipulation at Test Time for Making Better Mistakes in Deep Networks
Shyamgopal Karthik, Ameya Prabhu, Puneet Dokania, Vineet Gandhi
Poster
Wed 1:00 A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning
Samuel Horváth, Peter Richtarik
Poster
Wed 1:00 Neural Delay Differential Equations
Qunxi Zhu, Yao Guo, Wei Lin
Poster
Wed 1:00 Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin, Vincent Le Guen, Jérémie DONA, Emmanuel d Bezenac, Ibrahim Ayed, Nicolas THOME, patrick gallinari
Poster
Wed 1:00 Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
Khai Nguyen, Son Nguyen, Nhat Ho, Tung Pham, Hung Bui
Poster
Wed 1:00 IEPT: Instance-Level and Episode-Level Pretext Tasks for Few-Shot Learning
Manli Zhang, Jianhong Zhang, Zhiwu Lu, Tao Xiang, Mingyu Ding, Songfang Huang
Poster
Wed 1:00 Relating by Contrasting: A Data-efficient Framework for Multimodal Generative Models
Yuge Shi, Brooks Paige, Philip Torr, Siddharth N
Poster
Wed 1:00 Negative Data Augmentation
Abhishek Sinha, Kumar Ayush, Jiaming Song, Burak Uzkent, Hongxia Jin, Stefano Ermon
Poster
Wed 1:00 On Data-Augmentation and Consistency-Based Semi-Supervised Learning
Atin Ghosh, alexandre thiery
Poster
Wed 1:00 Auxiliary Task Update Decomposition: The Good, the Bad and the Neutral
Lucio Dery, Yann Dauphin, David Grangier
Oral
Wed 4:05 Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández Lobato
Oral
Wed 5:00 Learning Cross-Domain Correspondence for Control with Dynamics Cycle-Consistency
Qiang Zhang, Tete Xiao, Alyosha Efros, Lerrel Pinto, Xiaolong Wang
Poster
Wed 9:00 Neural Networks for Learning Counterfactual G-Invariances from Single Environments
S Chandra Mouli, Bruno Ribeiro
Poster
Wed 9:00 Modeling the Second Player in Distributionally Robust Optimization
Paul Michel, Tatsunori Hashimoto, Graham Neubig
Poster
Wed 9:00 Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li, Misha Khodak, Nina Balcan, Ameet Talwalkar
Poster
Wed 9:00 More or Less: When and How to Build Convolutional Neural Network Ensembles
Abdul Wasay, Stratos Idreos
Poster
Wed 9:00 How Does Mixup Help With Robustness and Generalization?
Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, James Zou
Poster
Wed 9:00 Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning
Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan
Poster
Wed 9:00 Learning to Represent Action Values as a Hypergraph on the Action Vertices
Arash Tavakoli, Mehdi Fatemi, Petar Kormushev
Poster
Wed 9:00 Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
Brenden Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Santiago, Soo Kim, Joanne Kim
Poster
Wed 9:00 Long-tail learning via logit adjustment
Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, Sanjiv Kumar
Poster
Wed 9:00 Pre-training Text-to-Text Transformers for Concept-centric Common Sense
Wangchunshu Zhou, Dong-Ho Lee, Ravi Kiran Selvam, Seyeon Lee, Xiang Ren
Poster
Wed 9:00 Graph Information Bottleneck for Subgraph Recognition
Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, Ran He
Poster
Wed 9:00 A Gradient Flow Framework For Analyzing Network Pruning
Ekdeep Lubana, Robert Dick
Poster
Wed 9:00 Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff, Meire Fortunato, Alvaro Sanchez Gonzalez, Peter Battaglia
Poster
Wed 9:00 DeepAveragers: Offline Reinforcement Learning By Solving Derived Non-Parametric MDPs
aayam shrestha, Stefan Lee, Prasad Tadepalli, Alan Fern
Poster
Wed 9:00 HyperDynamics: Meta-Learning Object and Agent Dynamics with Hypernetworks
Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Anthony Platanios, Katerina Fragkiadaki
Poster
Wed 9:00 Learning Generalizable Visual Representations via Interactive Gameplay
Luca Weihs, Ani Kembhavi, Kiana Ehsani, Sarah M Pratt, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin Schwenk, Roozbeh Mottaghi, Ali Farhadi
Poster
Wed 9:00 Average-case Acceleration for Bilinear Games and Normal Matrices
Carles Domingo i Enrich, Fabian Pedregosa, Damien Scieur
Spotlight
Wed 12:48 LambdaNetworks: Modeling long-range Interactions without Attention
Irwan Bello
Spotlight
Wed 13:48 A Gradient Flow Framework For Analyzing Network Pruning
Ekdeep Lubana, Robert Dick
Oral
Wed 16:30 Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song, Jascha Sohl-Dickstein, Durk Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole
Spotlight
Wed 16:45 Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff, Meire Fortunato, Alvaro Sanchez Gonzalez, Peter Battaglia
Poster
Wed 17:00 gradSim: Differentiable simulation for system identification and visuomotor control
Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine, Jérôme Parent-Lévesque, Kevin Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, Sanja Fidler
Poster
Wed 17:00 Meta Back-Translation
Hieu Pham, Xinyi Wang, Yiming Yang, Graham Neubig
Poster
Wed 17:00 Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling
Benedikt Boecking, Willie Neiswanger, Eric P Xing, Artur Dubrawski
Poster
Wed 17:00 Fast And Slow Learning Of Recurrent Independent Mechanisms
Kanika Madan, Nan Rosemary Ke, Anirudh Goyal, Bernhard Schoelkopf, Yoshua Bengio
Poster
Wed 17:00 Wandering within a world: Online contextualized few-shot learning
Mengye Ren, Michael L Iuzzolino, Mike Mozer, Richard Zemel
Poster
Wed 17:00 Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective
Wuyang Chen, Xinyu Gong, Zhangyang Wang
Poster
Wed 17:00 Modelling Hierarchical Structure between Dialogue Policy and Natural Language Generator with Option Framework for Task-oriented Dialogue System
Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, Yunjie Gu
Poster
Wed 17:00 Learning and Evaluating Representations for Deep One-Class Classification
Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, Tomas Pfister
Poster
Wed 17:00 Control-Aware Representations for Model-based Reinforcement Learning
Brandon Cui, Yinlam Chow, Mohammad Ghavamzadeh
Poster
Wed 17:00 Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan, Alessandro Achille, Giovanni Paolini, Orchid Majumder, Avinash Ravichandran, Rahul Bhotika, Stefano Soatto
Poster
Wed 17:00 Combining Physics and Machine Learning for Network Flow Estimation
Arlei Lopes da Silva, Furkan Kocayusufoglu, Saber Jafarpour, Francesco Bullo, Ananthram Swami, Ambuj K Singh
Poster
Wed 17:00 Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, Kush R Varshney
Poster
Wed 17:00 On the Critical Role of Conventions in Adaptive Human-AI Collaboration
Andy Shih, Arjun Sawhney, Jovana Kondic, Stefano Ermon, Dorsa Sadigh
Poster
Wed 17:00 A Geometric Analysis of Deep Generative Image Models and Its Applications
Binxu Wang, Carlos Ponce
Poster
Wed 17:00 Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs
Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp
Spotlight
Wed 21:35 Regularized Inverse Reinforcement Learning
Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, Joelle Pineau
Oral
Thu 0:15 Complex Query Answering with Neural Link Predictors
Erik Arakelyan, Daniel Daza, Pasquale Minervini, Michael Cochez
Poster
Thu 1:00 Learnable Embedding sizes for Recommender Systems
Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, Yong Li
Poster
Thu 1:00 Efficient Generalized Spherical CNNs
Oliver Cobb, Christopher Wallis, Augustine Mavor-Parker, Augustin Marignier, Matthew Price, Mayeul d'Avezac, Jason McEwen
Poster
Thu 1:00 Private Image Reconstruction from System Side Channels Using Generative Models
Yuanyuan Yuan, Shuai Wang, Junping Zhang
Poster
Thu 1:00 R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu, Matthew Blaschko
Poster
Thu 1:00 Genetic Soft Updates for Policy Evolution in Deep Reinforcement Learning
Enrico Marchesini, Davide Corsi, Alessandro Farinelli
Poster
Thu 1:00 Neural Topic Model via Optimal Transport
He Zhao, Dinh Phung, Viet Huynh, Trung Le, Wray Buntine
Poster
Thu 1:00 What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Hussenot Hussenot-Desenonges, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
Poster
Thu 1:00 Contrastive Learning with Adversarial Perturbations for Conditional Text Generation
Seanie Lee, Dong Bok Lee, Sung Ju Hwang
Poster
Thu 1:00 Conditional Generative Modeling via Learning the Latent Space
Sameera Ramasinghe, Kanchana Ranasinghe, Salman Khan, Nick Barnes, Stephen Gould
Poster
Thu 1:00 Learning Reasoning Paths over Semantic Graphs for Video-grounded Dialogues
(Henry) Hung Le, Nancy F Chen, Steven Hoi
Poster
Thu 1:00 An Unsupervised Deep Learning Approach for Real-World Image Denoising
Dihan Zheng, Sia Huat Tan, Xiaowen Zhang, Zuoqiang Shi, Kaisheng Ma, Chenglong Bao
Poster
Thu 1:00 Interpretable Models for Granger Causality Using Self-explaining Neural Networks
Ričards Marcinkevičs, Julia E Vogt
Poster
Thu 1:00 Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang
Poster
Thu 1:00 Efficient Inference of Flexible Interaction in Spiking-neuron Networks
Feng Zhou, Yixuan Zhang, Jun Zhu
Oral
Thu 3:00 What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Hussenot Hussenot-Desenonges, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
Spotlight
Thu 3:45 Iterative Empirical Game Solving via Single Policy Best Response
Max Smith, Thomas Anthony, Michael Wellman
Oral
Thu 4:20 Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin, Vincent Le Guen, Jérémie DONA, Emmanuel d Bezenac, Ibrahim Ayed, Nicolas THOME, patrick gallinari
Poster
Thu 9:00 Graph Coarsening with Neural Networks
Chen Cai, Dingkang Wang, Yusu Wang
Poster
Thu 9:00 Deep Networks and the Multiple Manifold Problem
Sam Buchanan, Dar Gilboa, John Wright
Poster
Thu 9:00 Lifelong Learning of Compositional Structures
Jorge Mendez, ERIC EATON
Poster
Thu 9:00 Learning Cross-Domain Correspondence for Control with Dynamics Cycle-Consistency
Qiang Zhang, Tete Xiao, Alyosha Efros, Lerrel Pinto, Xiaolong Wang
Poster
Thu 9:00 Blending MPC & Value Function Approximation for Efficient Reinforcement Learning
Mohak Bhardwaj, Sanjiban Choudhury, Byron Boots
Poster
Thu 9:00 Cut out the annotator, keep the cutout: better segmentation with weak supervision
Sarah Hooper, Michael Wornow, Ying Seah, Peter Kellman, Hui Xue, Frederic Sala, Curtis Langlotz, Christopher Re
Poster
Thu 9:00 Uncertainty in Gradient Boosting via Ensembles
Andrey Malinin, Liudmila Prokhorenkova, Aleksei Ustimenko
Poster
Thu 9:00 Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces
Yatin Nandwani, Deepanshu Jindal, Mausam ., Parag Singla
Poster
Thu 9:00 A teacher-student framework to distill future trajectories
Alexander Neitz, Giambattista Parascandolo, Bernhard Schoelkopf
Poster
Thu 9:00 Dual-mode ASR: Unify and Improve Streaming ASR with Full-context Modeling
Jiahui Yu, Wei Han, Anmol Gulati, Chung-Cheng Chiu, Bo Li, Tara Sainath, Yonghui Wu, Ruoming Pang
Poster
Thu 9:00 Analyzing the Expressive Power of Graph Neural Networks in a Spectral Perspective
Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, Paul Honeine
Poster
Thu 9:00 Directed Acyclic Graph Neural Networks
Veronika Thost, Jie Chen
Poster
Thu 9:00 On Position Embeddings in BERT
Wang Benyou, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, Jakob Simonsen
Thu 12:00 Philosophy and AGI (#2)
Spotlight
Thu 12:30 DeepAveragers: Offline Reinforcement Learning By Solving Derived Non-Parametric MDPs
aayam shrestha, Stefan Lee, Prasad Tadepalli, Alan Fern
Spotlight
Thu 13:50 Disentangled Recurrent Wasserstein Autoencoder
Jun Han, Martin Min, Ligong Han, Li Erran Li, Xuan Zhang
Poster
Thu 17:00 Learning to Make Decisions via Submodular Regularization
Ayya Alieva, Aiden Aceves, Jialin Song, Stephen Mayo, Yisong Yue, Yuxin Chen
Poster
Thu 17:00 In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, Mubarak Shah
Poster
Thu 17:00 HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao, Jie Ding, VAHID TAROKH
Poster
Thu 17:00 Learning to Sample with Local and Global Contexts in Experience Replay Buffer
Youngmin Oh, Kimin Lee, Jinwoo Shin, Eunho Yang, Sung Ju Hwang
Poster
Thu 17:00 Neural representation and generation for RNA secondary structures
Zichao Yan, Will Hamilton, Mathieu Blanchette
Poster
Thu 17:00 Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun, Jiaming Liu, Yiran Sun, Brendt Wohlberg, Ulugbek Kamilov
Poster
Thu 17:00 ANOCE: Analysis of Causal Effects with Multiple Mediators via Constrained Structural Learning
Hengrui Cai, Rui Song, Wenbin Lu
Poster
Thu 17:00 Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, Stella Yu
Poster
Thu 17:00 Contrastive Syn-to-Real Generalization
Wuyang Chen, Zhiding Yu, Shalini De Mello, Sifei Liu, Jose M. Alvarez, Zhangyang Wang, Anima Anandkumar
Poster
Thu 17:00 Global Convergence of Three-layer Neural Networks in the Mean Field Regime
Huy Tuan Pham, Phan-Minh Nguyen
Poster
Thu 17:00 Randomized Automatic Differentiation
Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P Adams
Poster
Thu 17:00 Learning perturbation sets for robust machine learning
Eric Wong, Zico Kolter
Poster
Thu 17:00 Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders
Mangal Prakash, Alexander Krull, Florian Jug
Poster
Thu 17:00 Convex Regularization behind Neural Reconstruction
Arda Sahiner, Morteza Mardani, Batu Ozturkler, Mert Pilanci, John M Pauly
Poster
Thu 17:00 Self-supervised Learning from a Multi-view Perspective
Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, LP Morency
Poster
Thu 17:00 CO2: Consistent Contrast for Unsupervised Visual Representation Learning
Chen Wei, Huiyu Wang, Wei Shen, Alan Yuille
Poster
Thu 17:00 On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis
Zhong Li, Jiequn Han, Weinan E, Qianxiao Li
Spotlight
Thu 19:15 Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, Stella Yu
Spotlight
Thu 20:05 A Good Image Generator Is What You Need for High-Resolution Video Synthesis
Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris Metaxas, Sergey Tulyakov
Workshop
Fri 3:25 Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Workshop
Fri 5:20 Spotlight 4: Théo Ladune et al., Conditional Coding for Flexible Learned Video Compression
Workshop
Fri 5:50 Energy-Based Models: Current Perspectives, Challenges, and Opportunities
Marc Dymetman, Adji Bousso Dieng, Hady Elsahar, Igor Mordatch, Marc'Aurelio Ranzato
Workshop
Fri 6:18 Adversarial Data Augmentation Improves Unsupervised Machine Learning
Chia-Yi Hsu
Workshop
Fri 7:25 Physically-Consistent Generative Adversarial Networks for Coastal Flood Visualization.
Björn Lütjens, brandon leshchinskiy, Christian Requena-Mesa, Natalia Diaz Rodriguez, Aruna Sankaranarayanan, Aaron Piña, Yarin Gal, Chedy Raissi, Alexander Lavin, Dava Newman
Workshop
Fri 8:15 Boosting Classification Accuracy of Fertile Sperm Cell Images leveraging cDCGAN
Dipam Paul
Workshop
Fri 8:36 Fairly Estimating Socioeconomic Status Under Costly Feature Acquisition
Kush R Varshney
Workshop
Fri 8:40 Biased Client Selection for Improved Convergence of Federated Learning
Gauri Joshi
Workshop
Fri 9:01 "Differentially Private Synthetic Data Generations Using Generative Adversarial Networks" by Jinsung Yoon, Google Cloud AI
Jinsung Yoon
Workshop
Fri 10:42 Privacy Amplification via Iteration for Shuffled and Online PNSGD
Matteo Sordello, Zhiqi Bu, Jinshuo Dong, Weijie J Su
Workshop
Fri 10:54 TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption
Ayoub Benaissa
Workshop
Fri 11:35 Spotlight 7: Emilien Dupont, COIN: COmpression with Implicit Neural representations
Workshop
Fri 11:44 Boosting Classification Accuracy of Fertile Sperm Cell Images leveraging cDCGAN
Dipam Paul
Workshop
Fri 11:45 Spotlight 9: George Zhang et al., Universal Rate-Distortion-Perception Representations for Lossy Compression
Workshop
Fri 11:52 DeepSMOTE: Deep Learning for Imbalanced Data
Bartosz Krawczyk
Workshop
Privacy and Integrity Preserving Training Using Trusted Hardware
Seyedeh Hanieh Hashemi, Yongqin Wang, Murali Annavaram
Workshop
TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption
Ayoub Benaissa
Workshop
PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN
Daniele Romanini, Adam Hall, Pavlos Papadopoulos, Tom Titcombe, Abbas Ismail, Tudor Cebere, Robert Sandmann, Robin Roehm, Michael Hoeh
Workshop
Syft: A Platform for Universally Deployable Structured Transparency
Adam Hall
Workshop
Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques
Filip Hanzely, Boxin Zhao, Mladen Kolar
Workshop
AsymmetricML: An Asymmetric Decomposition Framework for Privacy-Preserving DNN Training and Inference
Yue Niu, Salman Avestimehr
Workshop
SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning
Nishat Koti, Mahak Pancholi, Arpita Patra, Ajith Suresh
Workshop
Byzantine-Robust and Privacy-Preserving Framework for FedML
Seyedeh Hanieh Hashemi
Workshop
What is Going on Inside Recurrent Meta Reinforcement Learning Agents?
Safa Alver, Doina Precup
Workshop
Multi-Task Reinforcement Learning with Context-based Representations
Shagun Sodhani, Amy Zhang, Joelle Pineau
Workshop
PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse TD Learning
Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, Gregory Farquhar
Workshop
Heterogeneous Zero-Shot Federated Learning with New Classes for Audio Classification
Gautham Krishna Gudur, Satheesh Perepu
Workshop
MPCLeague: Robust 4-party Computation for Privacy-Preserving Machine Learning
Nishat Koti, Arpita Patra, Ajith Suresh
Workshop
Privacy Amplification via Iteration for Shuffled and Online PNSGD
Matteo Sordello, Zhiqi Bu, Jinshuo Dong, Weijie J Su