Session
Oral Session 10
Moderators: Piotr Mirowski · Andreas Damianou · Thomas Kipf
What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
Marcin Andrychowicz · Anton Raichuk · Piotr Stanczyk · Manu Orsini · Sertan Girgin · Raphaël Marinier · Léonard Hussenot-Desenonges · Matthieu Geist · Olivier Pietquin · Marcin Michalski · Sylvain Gelly · Olivier Bachem
In recent years, reinforcement learning (RL) has been successfully applied to many different continuous control tasks. While RL algorithms are often conceptually simple, their state-of-the-art implementations take numerous low- and high-level design decisions that strongly affect the performance of the resulting agents. Those choices are usually not extensively discussed in the literature, leading to discrepancy between published descriptions of algorithms and their implementations. This makes it hard to attribute progress in RL and slows down overall progress [Engstrom'20]. As a step towards filling that gap, we implement >50 such ``"choices" in a unified on-policy deep actor-critic framework, allowing us to investigate their impact in a large-scale empirical study. We train over 250'000 agents in five continuous control environments of different complexity and provide insights and practical recommendations for the training of on-policy deep actor-critic RL agents.
Winning the L2RPN Challenge: Power Grid Management via Semi-Markov Afterstate Actor-Critic
Deunsol Yoon · Sunghoon Hong · Byung-Jun Lee · Kee-Eung Kim
Safe and reliable electricity transmission in power grids is crucial for modern society. It is thus quite natural that there has been a growing interest in the automatic management of power grids, exemplified by the Learning to Run a Power Network Challenge (L2RPN), modeling the problem as a reinforcement learning (RL) task. However, it is highly challenging to manage a real-world scale power grid, mostly due to the massive scale of its state and action space. In this paper, we present an off-policy actor-critic approach that effectively tackles the unique challenges in power grid management by RL, adopting the hierarchical policy together with the afterstate representation. Our agent ranked first in the latest challenge (L2RPN WCCI 2020), being able to avoid disastrous situations while maintaining the highest level of operational efficiency in every test scenarios. This paper provides a formal description of the algorithmic aspect of our approach, as well as further experimental studies on diverse power grids.
UPDeT: Universal Multi-agent RL via Policy Decoupling with Transformers
Siyi Hu · Fengda Zhu · Xiaojun Chang · Xiaodan Liang
Recent advances in multi-agent reinforcement learning have been largely limited in training one model from scratch for every new task. The limitation is due to the restricted model architecture related to fixed input and output dimensions. This hinders the experience accumulation and transfer of the learned agent over tasks with diverse levels of difficulty (e.g. 3 vs 3 or 5 vs 6 multi-agent games). In this paper, we make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks with the requirement of different observation and action configurations. Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy by decoupling the policy distribution from the intertwined input observation with an importance weight measured by the merits of the self-attention mechanism. Compared to a standard transformer block, the proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable. UPDeT is general enough to be plugged into any multi-agent reinforcement learning pipeline and equip them with strong generalization abilities that enables the handling of multiple tasks at a time. Extensive experiments on large-scale SMAC multi-agent competitive games demonstrate that the proposed UPDeT-based multi-agent reinforcement learning achieves significant results relative to state-of-the-art approaches, demonstrating advantageous transfer capability in terms of both performance and training speed (10 times faster).
Quantifying Differences in Reward Functions
Adam Gleave · Michael Dennis · Shane Legg · Stuart Russell · Jan Leike
For many tasks, the reward function is inaccessible to introspection or too complex to be specified procedurally, and must instead be learned from user data. Prior work has evaluated learned reward functions by evaluating policies optimized for the learned reward. However, this method cannot distinguish between the learned reward function failing to reflect user preferences and the policy optimization process failing to optimize the learned reward. Moreover, this method can only tell us about behavior in the evaluation environment, but the reward may incentivize very different behavior in even a slightly different deployment environment. To address these problems, we introduce the Equivalent-Policy Invariant Comparison (EPIC) distance to quantify the difference between two reward functions directly, without a policy optimization step. We prove EPIC is invariant on an equivalence class of reward functions that always induce the same optimal policy. Furthermore, we find EPIC can be efficiently approximated and is more robust than baselines to the choice of coverage distribution. Finally, we show that EPIC distance bounds the regret of optimal policies even under different transition dynamics, and we confirm empirically that it predicts policy training success. Our source code is available at https://github.com/HumanCompatibleAI/evaluating-rewards.
Iterative Empirical Game Solving via Single Policy Best Response
Max Smith · Thomas Anthony · Michael Wellman
Policy-Space Response Oracles (PSRO) is a general algorithmic framework for learning policies in multiagent systems by interleaving empirical game analysis with deep reinforcement learning (DRL). At each iteration, DRL is invoked to train a best response to a mixture of opponent policies. The repeated application of DRL poses an expensive computational burden as we look to apply this algorithm to more complex domains. We introduce two variations of PSRO designed to reduce the amount of simulation required during DRL training. Both algorithms modify how PSRO adds new policies to the empirical game, based on learned responses to a single opponent policy. The first, Mixed-Oracles, transfers knowledge from previous iterations of DRL, requiring training only against the opponent's newest policy. The second, Mixed-Opponents, constructs a pure-strategy opponent by mixing existing strategy's action-value estimates, instead of their policies. Learning against a single policy mitigates conflicting experiences on behalf of a learner facing an unobserved distribution of opponents. We empirically demonstrate that these algorithms substantially reduce the amount of simulation during training required by PSRO, while producing equivalent or better solutions to the game.
Discovering a set of policies for the worst case reward
Tom Zahavy · Andre Barreto · Daniel J Mankowitz · Shaobo Hou · Brendan ODonoghue · Iurii Kemaev · Satinder Singh
We study the problem of how to construct a set of policies that can be composed together to solve a collection of reinforcement learning tasks. Each task is a different reward function defined as a linear combination of known features. We consider a specific class of policy compositions which we call set improving policies (SIPs): given a set of policies and a set of tasks, a SIP is any composition of the former whose performance is at least as good as that of its constituents across all the tasks. We focus on the most conservative instantiation of SIPs, set-max policies (SMPs), so our analysis extends to any SIP. This includes known policy-composition operators like generalized policy improvement. Our main contribution is an algorithm that builds a set of policies in order to maximize the worst-case performance of the resulting SMP on the set of tasks. The algorithm works by successively adding new policies to the set. We show that the worst-case performance of the resulting SMP strictly improves at each iteration, and the algorithm only stops when there does not exist a policy that leads to improved performance. We empirically evaluate our algorithm on a grid world and also on a set of domains from the DeepMind control suite. We confirm our theoretical results regarding the monotonically improving performance of our algorithm. Interestingly, we also show empirically that the sets of policies computed by the algorithm are diverse, leading to different trajectories in the grid world and very distinct locomotion skills in the control suite.
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin · Vincent Le Guen · Jérémie DONA · Emmanuel d Bezenac · Ibrahim Ayed · Nicolas THOME · patrick gallinari
Forecasting complex dynamical phenomena in settings where only partial knowledge of their dynamics is available is a prevalent problem across various scientific fields. While purely data-driven approaches are arguably insufficient in this context, standard physical modeling based approaches tend to be over-simplistic, inducing non-negligible errors. In this work, we introduce the APHYNITY framework, a principled approach for augmenting incomplete physical dynamics described by differential equations with deep data-driven models. It consists in decomposing the dynamics into two components: a physical component accounting for the dynamics for which we have some prior knowledge, and a data-driven component accounting for errors of the physical model. The learning problem is carefully formulated such that the physical model explains as much of the data as possible, while the data-driven component only describes information that cannot be captured by the physical model, no more, no less. This not only provides the existence and uniqueness for this decomposition, but also ensures interpretability and benefits generalization. Experiments made on three important use cases, each representative of a different family of phenomena, i.e. reaction-diffusion equations, wave equations and the non-linear damped pendulum, show that APHYNITY can efficiently leverage approximate physical models to accurately forecast the evolution of the system and correctly identify relevant physical parameters.
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang · Xingjun Ma · Sarah Erfani · James Bailey · Yisen Wang
The volume of "free" data on the internet has been key to the current success of deep learning. However, it also raises privacy concerns about the unauthorized exploitation of personal data for training commercial models. It is thus crucial to develop methods to prevent unauthorized data exploitation. This paper raises the question: can data be made unlearnable for deep learning models? We present a type of error-minimizing noise that can indeed make training examples unlearnable. Error-minimizing noise is intentionally generated to reduce the error of one or more of the training example(s) close to zero, which can trick the model into believing there is "nothing" to learn from these example(s). The noise is restricted to be imperceptible to human eyes, and thus does not affect normal data utility. We empirically verify the effectiveness of error-minimizing noise in both sample-wise and class-wise forms. We also demonstrate its flexibility under extensive experimental settings and practicability in a case study of face recognition. Our work establishes an important first step towards making personal data unexploitable to deep learning models.
Self-supervised Visual Reinforcement Learning with Object-centric Representations
Andrii Zadaianchuk · Maximilian Seitzer · Georg Martius
Autonomous agents need large repertoires of skills to act reasonably on new tasks that they have not seen before. However, acquiring these skills using only a stream of high-dimensional, unstructured, and unlabeled observations is a tricky challenge for any autonomous agent. Previous methods have used variational autoencoders to encode a scene into a low-dimensional vector that can be used as a goal for an agent to discover new skills. Nevertheless, in compositional/multi-object environments it is difficult to disentangle all the factors of variation into such a fixed-length representation of the whole scene. We propose to use object-centric representations as a modular and structured observation space, which is learned with a compositional generative world model. We show that the structure in the representations in combination with goal-conditioned attention policies helps the autonomous agent to discover and learn useful skills. These skills can be further combined to address compositional tasks like the manipulation of several different objects.
On Self-Supervised Image Representations for GAN Evaluation
Stanislav Morozov · Andrey Voynov · Artem Babenko
The embeddings from CNNs pretrained on Imagenet classification are de-facto standard image representations for assessing GANs via FID, Precision and Recall measures. Despite broad previous criticism of their usage for non-Imagenet domains, these embeddings are still the top choice in most of the GAN literature.
In this paper, we advocate the usage of the state-of-the-art self-supervised representations to evaluate GANs on the established non-Imagenet benchmarks. These representations, typically obtained via contrastive learning, are shown to provide better transfer to new tasks and domains, therefore, can serve as more universal embeddings of natural images. With extensive comparison of the recent GANs on the common datasets, we show that self-supervised representations produce a more reasonable ranking of models in terms of FID/Precision/Recall, while the ranking with classification-pretrained embeddings often can be misleading.
Retrieval-Augmented Generation for Code Summarization via Hybrid GNN
Shangqing Liu · Yu Chen · Xiaofei Xie · Siow Jing Kai · Yang Liu
Source code summarization aims to generate natural language summaries from structured code snippets for better understanding code functionalities. However, automatic code summarization is challenging due to the complexity of the source code and the language gap between the source code and natural language summaries. Most previous approaches either rely on retrieval-based (which can take advantage of similar examples seen from the retrieval database, but have low generalization performance) or generation-based methods (which have better generalization performance, but cannot take advantage of similar examples). This paper proposes a novel retrieval-augmented mechanism to combine the benefits of both worlds. Furthermore, to mitigate the limitation of Graph Neural Networks (GNNs) on capturing global graph structure information of source code, we propose a novel attention-based dynamic graph to complement the static graph representation of the source code, and design a hybrid message passing GNN for capturing both the local and global structural information. To evaluate the proposed approach, we release a new challenging benchmark, crawled from diversified large-scale open-source C projects (total 95k+ unique functions in the dataset). Our method achieves the state-of-the-art performance, improving existing methods by 1.42, 2.44 and 1.29 in terms of BLEU-4, ROUGE-L and METEOR.
Practical Real Time Recurrent Learning with a Sparse Approximation
Jacob Menick · Erich Elsen · Utku Evci · Simon Osindero · Karen Simonyan · Alex Graves
Recurrent neural networks are usually trained with backpropagation through time, which requires storing a complete history of network states, and prohibits updating the weights "online" (after every timestep). Real Time Recurrent Learning (RTRL) eliminates the need for history storage and allows for online weight updates, but does so at the expense of computational costs that are quartic in the state size. This renders RTRL training intractable for all but the smallest networks, even ones that are made highly sparse. We introduce the Sparse n-step Approximation (SnAp) to the RTRL influence matrix. SnAp only tracks the influence of a parameter on hidden units that are reached by the computation graph within $n$ timesteps of the recurrent core. SnAp with $n=1$ is no more expensive than backpropagation but allows training on arbitrarily long sequences. We find that it substantially outperforms other RTRL approximations with comparable costs such as Unbiased Online Recurrent Optimization. For highly sparse networks, SnAp with $n=2$ remains tractable and can outperform backpropagation through time in terms of learning speed when updates are done online.