Poster
T-MARS: Improving Visual Representations by Circumventing Text Feature Learning
Pratyush Maini · Sachin Goyal · Zachary Lipton · J Kolter · Aditi Raghunathan
Halle B #95
Abstract:
Large web-crawled multimodal datasets have powered a slew of new methods for learning general-purpose visual representations, advancing the state of the art in computer vision and revolutionizing zero- and few-shot recognition. One crucial decision facing practitioners is how, if at all, to curate these ever-larger datasets. For example, the creators of the LAION-5B dataset chose to retain only image-caption pairs whose CLIP similarity score exceeded a designated threshold. In this paper, we propose a new state-of-the-art data filtering approach motivated by our observation that nearly $40\%$ of LAION's images contain text that overlaps significantly with the caption. Intuitively, such data could be wasteful as it incentivizes models to perform optical character recognition rather than learning visual features. However, naively removing all such data could also be wasteful, as it throws away images that contain visual features (in addition to overlapping text). Our simple and scalable approach, T-MARS (Text Masking and Re-Scoring), filters out only those pairs where the text dominates the remaining visual features---by first masking out the text and then filtering out those with a low CLIP similarity score of the masked image with original captions. Experimentally, T-MARS is the top ranked approach on Imagenet at ``medium scale'' of DataComp (a data filtering benchmark), and outperforms CLIP filtering by a margin of $6.5\%$ on ImageNet and $4.7\%$ on VTAB. Additionally, we show that the accuracy gains enjoyed by T-MARS linearly increase as data and compute are scaled exponentially.
Chat is not available.