Object-Centric World Models from Few-Shot Annotations for Sample-Efficient Reinforcement Learning
Abstract
While deep reinforcement learning (DRL) from pixels has achieved remarkable success, its sample inefficiency remains a critical limitation for real-world applications. Model-based RL (MBRL) addresses this by learning a world model to generate simulated experience, but standard approaches that rely on pixel-level reconstruction losses often fail to capture small, task-critical objects in complex, dynamic scenes. We posit that an object-centric representation can direct model capacity toward semantically meaningful entities, improving dynamics prediction and sample efficiency. In this work, we introduce OC-STORM, an object-centric MBRL framework that enhances a learned world model with object representations extracted by a pretrained segmentation network. By conditioning on a minimal number of annotated frames, OC-STORM learns to track decision‐relevant object dynamics and inter‑object interactions without extensive labeling or access to privileged information. Empirical results demonstrate that OC-STORM significantly outperforms the STORM baseline on the Atari 100k benchmark and achieves state-of-the-art sample efficiency on challenging boss fights in the visually complex game Hollow Knight. Our findings underscore the potential of integrating object-centric priors into MBRL for complex visual domains. Core code and evaluation videos are available in supplementary materials.