Dual-IPO: Dual-Iterative Preference Optimization for Text-to-Video Generation
Abstract
Recent advances in video generation have enabled thrilling experiences in producing realistic videos driven by scalable diffusion transformers. However, they usually fail to produce satisfactory outputs that are aligned to users' authentic demands and preferences. In this work, we introduce Dual-Iterative Optimization (Dual-IPO), an iterative paradigm that sequentially optimizes both the reward model and the video generation model for improved synthesis quality and human preference alignment. For the reward model, our framework ensures reliable and robust reward signals via CoT-guided reasoning, voting-based self-consistency, and preference certainty estimation. Given this, we optimize video foundation models with guidance of signals from reward model's feedback, thus improving the synthesis quality in subject consistency, motion smoothness and aesthetic quality, etc. The reward model and video generation model complement each other and are progressively improved in the multi-round iteration, without requiring tediously manual preference annotations. Comprehensive experiments demonstrate that the proposed Dual-IPO can effectively and consistently improve the video generation quality of base model with various architectures and sizes, even help a model with only 2B parameters surpass a 5B one. Moreover, our analysis experiments and ablation studies identify the rational of our systematic design and the efficacy of each component. Our code and models will be publicly available.